K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

a) \(\left(2x-3y\right)^2=4x^2-12xy+9y^2\)

b) \(\left(5p-q\right)^2=25p^2-10pq+q^2\)

c) \(\left(-a-b\right)^2=-a^2-2ab-b^2\)

d) \(\left(1+3s\right)^2=1+6s+9s^2\)

e) \(\left(a^2b+2b\right)^2=a^4b^2+4a^2b^2+4b^2\)

f) \(\left(3u-v\right)^3=27u^3-27u^2v+9uv^2-v^3\)

26 tháng 8 2017

a,\(\left(2x-3y\right)=\left(2x\right)^2-2.2x.3y+\left(3y\right)^2\)

=\(4x^2-12xy+6y^2\)

b,\(\left(5p-q\right)^2=\left(5p\right)^2-2.5p.q+q^2\)

=\(25p^2-10pq+q^2\)

c,(-a-b)\(^2=\left(-a\right)^2-2.\left(-a\right).b+b^2\)

=\(a^2+2ab+b^2\)

d,\(\left(1+3s\right)^2=1+6s+9s^2\)

e,(a\(^2b+2b)^2=(a^2b)^2+2.a^2b.2b^2+\left(2b\right)^2\)

=\(a^4b^2+4a^2b^2+4b^2\)

f,\(\left(3u-v\right)^3=27u^3-27u^2v+9uv^2-v^3\)

10 tháng 7 2016

Bài 1:

  • a,(2+xy)^2=4+4xy+x^2y^2
  • b,(5-3x)^2=25-30x+9x^2
  • d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1
22 tháng 8 2020

a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)

d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)

e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)

f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)

22 tháng 8 2020

a, \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b, \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

e, \(\left(x-y\right)^2\left(x+y\right)^2=x^4-2x^2y^2+y^4\)

15 tháng 7 2015

mk ko hỉu cái đề của bn: Dạng 4,5: Lập phương của 1 tổng và lập phương của một hiệu ♥

Có phải bằng Dạng 4,5: Lập phương của 1 tổng và lập phương của một hiệu là yo

4 tháng 9 2020

Áp dụng công thức : (A + B)3 = A3 + 3A2B + 3AB2 + B3

(A - B)3 = A3 - 3A2B + 3AB2 -B3

a) (3x + 1)3 = (3x)3 + 3.(3x)2.1 + 3.3x.1 + 13 = 27x3 + 27x2 + 9x + 1

b) \(\left(\frac{x}{3}-1\right)^3=\left(\frac{x}{3}\right)^3-3\cdot\left(\frac{x}{3}\right)^2\cdot1+3\cdot\left(\frac{x}{3}\right)\cdot1^2-1^3\)

\(=\frac{x^3}{27}-3\cdot\frac{x^2}{9}\cdot1+3\cdot\frac{x}{3}\cdot1-1\)

\(\frac{x^3}{27}-\frac{x^2}{3}+x-1\)

c) \(\left(2x-\frac{1}{x}\right)^3=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot\frac{1}{x}+3\cdot2x\cdot\left(\frac{1}{x}\right)^2-\left(\frac{1}{x}\right)^3\)

\(=8x^3-3\cdot4x^2\cdot\frac{1}{x}+6x\cdot\frac{1}{x^2}-\frac{1}{x^3}\)

\(=8x^3-12x+\frac{6}{x}-\frac{1}{x^3}\)

d) \(\left(-y^2+3x\right)^3=\left(3x-y^2\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot y^2+3\cdot3x\cdot y^4-y^6\)

= 27x3 - 27x2y+ 9xy4 - y6

= -y6 + 9xy4 - 27x2y2 + 27x3

Tương tự câu cuối :>

3 tháng 9 2016

\(1.VP\)

\(\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)

\(=a^2+b^2=VT\left(DPCM\right)\)

3 tháng 9 2016

1/  (a + b)2 - 2ab = a2 + 2ab + b2 - 2ab = a2 + b2 + (2ab - 2ab) = a2 + b2

2/  (a2 + b2)2 - 2a2b2 = a4 + 2a2b2 + b4 - 2a2b2 = a4 + b4 + (2a2b2 - 2a2b2) = a4 + b4

Bài 7: Phân tích đa thức thành nhân tử

a) Ta có: \(a^2-b^2-2a+2b\)

\(=\left(a-b\right)\left(a+b\right)-2\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b-2\right)\)

b) Ta có: \(3x-3y-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(3+5x\right)\)

c) Ta có: \(16-x^2+4xy-4y^2\)

\(=16-\left(x^2-4xy+4y^2\right)\)

\(=16-\left(x-2y\right)^2\)

\(=\left(4-x+2y\right)\left(4+x-2y\right)\)

d) Ta có: \(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)

\(=\left(5-x-4y\right)\left(3x+2y+3\right)\)

e) Ta có: \(x^4+x^3+2x^2+x+1\)

\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)

\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+1+x\right)\)

f) Ta có: \(\left(x+3\right)^3+\left(x-3\right)^3\)

\(=\left(x+3+x-3\right)\left[\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\right]\)

\(=2x\cdot\left[x^2+6x+9-\left(x^2-9\right)+x^2-6x+9\right]\)

\(=2x\cdot\left(2x^2+18-x^2+9\right)\)

\(=2x\cdot\left(x^2+27\right)\)

g) Ta có: \(9x^2-3xy+y-6x+1\)

\(=\left(9x^2-6x+1\right)-y\left(3x-1\right)\)

\(=\left(3x-1\right)^2-y\left(3x-1\right)\)

\(=\left(3x-1\right)\left(3x-1-y\right)\)

h) Ta có: \(x^3-4x^2+12x-27\)

\(=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)