Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Chứng minh nó chia hết cho 3:
Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.
\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.
\(\Rightarrow xy⋮3\)
Chứng minh chia hết cho 4.
Nếu cả x, y đều chẵn thì \(xy⋮4\)
Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ
\(\Rightarrow x=2k+1;y=2m;z=2n+1\)
\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m⋮2\)
\(\Rightarrow y⋮4\)
\(\Rightarrow xy⋮4\)
Với x, y đều lẻ nên z chẵn
\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)
\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này
Vậy \(xy⋮4\)
Từ chứng minh trên
\(\Rightarrow xy⋮12\)
2/ \(a+b=c+d\)
\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)
\(\Leftrightarrow2ab=2cd\)
\(\Leftrightarrow-2ab=-2cd\)
\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)
Kết hợp với \(a+b=c+d\)
\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)
\(\RightarrowĐPCM\)
Ta có \(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}=\frac{1}{a-b-c}\)
=> \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b-c}+\frac{1}{c}\)
=> \(\frac{b-a}{ab}=\frac{a-b}{\left(a-b-c\right)c}\)
Khi b - a = 0
=> (b - a)(a - c)(b + c) = 0 (1)
Khi b - a \(\ne0\)
=> ab = -(a - b - c).c
=> ab = -ac + bc + c2
=> ab + ac - bc - c2 = 0
=> a(b + c) - c(b + c) = 0
=> (a - c)(b + c) = 0
=> (b - a)(a - c)(b + c) = 0 (2)
Từ (1)(2) => (b - a)(a - c)(b + c) = 0
=> b - a = 0 hoặc a - c = 0 hoặc b + c = 0
=> a = b hoặc a = c hoặc b = -c
Vậy tồn tại 2 số bằng nhau hoặc đối nhau
áp dụng BĐT bunhia... ta có
\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)
\(\Rightarrow a+2b\le3c\)
áp dụng cosi ta có
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)
dấu = xảy ra khi a=b=c
1) Cho 3 số a,b,c thỏa mãn 0 < a <= b <= c. Chứng minh rằng:
a/b + b/c + c/a >= b/a + c/a + a/c
2) Giải phương trình:
( 2017 - x)^3 + ( 2019 - x)^3 + (2x - 4036)^3 = 0
3)
a) Rút gọn biểu thức : A = 1/1-x + 1/1+x + 2/1+x^2 + 4/1+x^4 + 8/1+x+8
b) Tìm x,y biết : x^2 + y^2 + 1/x^2 + 1/y^2 = 4