K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

ta có 3n+2 chia hết cho 2n+1

Nên   2(3n+2) chia hết cho 2n+1

            6n+4 chia hết cho 2n+1

           6n+3+1 chia hết cho 2n+1

           (6n+3)+1 chia hết cho 2n+1

            3*(2n+1)+1 chia hết cho 2n+1

Mà 3*(2n+1) chia hết cho 2n+1 nên 1 phải chia hết cho 2n+1

Nên 2n+1E Ư(1)

       2n+1E{1;-1}

Nếu 2n+1=1 

        2n=1-1

      2n=0

      n=0

Nếu 2n+1=-1

       2n=-1-1

       2n=-2

         n=-1

KL: vậy n=-1 hoặc n=0

17 tháng 1 2018

3n+2\(⋮\)2n+1

\(\Rightarrow\)2(3n+2)\(⋮\)2n+1

6n+4\(⋮\)2n+1

3(2n+1)+1\(⋮\)2n+1

Vì 3(2n+1)\(⋮\)2n+1 nên 1\(⋮\)2n+1

\(\Rightarrow\)2n+1\(\in\)Ư(1)

2n+1 1 -1
n 0 -1

Vậy n\(\in\){0;-1}

19 tháng 3 2016

a) Phương trình đường thẳng d có dạng: , với t ∈ R.

b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương 

(1 ; 1 ; -1) vì  là vectơ pháp tuyến của (α).

Do vậy phương trình tham số của d có dạng: 

                     

c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆  nên  cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:

                      

d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương

 (4 ; 2 ; -1) nên phương trình tham số có dạng:

                      

18 tháng 4 2016

a) Phương trình đường thẳng d có dạng: , với t ∈ R.

b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương 

(1 ; 1 ; -1) vì  là vectơ pháp tuyến của (α).

Do vậy phương trình tham số của d có dạng: 

                     

c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆  nên  cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:

                      

d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương

 (4 ; 2 ; -1) nên phương trình tham số có dạng:

                      


 

19 tháng 3 2016

Xét hệ 

Hai đường thẳng d và d' cắt nhau khi và chỉ khi hệ có nghiệm duy nhất.

Nhân hai về của phương trình (3) với 2 rồi cộng vế với vế vào phương trình (2), ta có t = 2;

s = 0. Thay vào phương trình (1) ta có 1 + 2a = 1 => a =0.

Vậy a = 0 thì d và d' cắt nhau.

 

18 tháng 4 2016

Xét hệ 

Hai đường thẳng d và d' cắt nhau khi và chỉ khi hệ có nghiệm duy nhất.

Nhân hai về của phương trình (3) với 2 rồi cộng vế với vế vào phương trình (2), ta có t = 2;

s = 0. Thay vào phương trình (1) ta có 1 + 2a = 1 => a =0.

Vậy a = 0 thì d và d' cắt nhau.

 

10 tháng 4 2016

vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM 

n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)

nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3

nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ

10 tháng 4 2016

câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)

Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z

nên ta chỉ cần tìm giá trị của n để A chia hết cho5

để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5

                                   nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)

mà 1<n<10 nên n=5(n là số nguyên dương)

vậy giá trị của n thỏa mãn đề bài là 5

 

19 tháng 3 2016

a)  Đường thẳng d đi qua M1( -3 ; -2 ; 6) và có vectơ chỉ phương (2 ; 3 ; 4).

Đường thẳng d' đi qua M2( 5 ; -1 ; 20) và có vectơ chỉ phương (1 ; -4 ; 1).

Ta có    = (19 ; 2 ; -11) ;  = (8 ; 1 ; 14) 

và  = (19.8 + 2 - 11.4) = 0

nên d và d' cắt nhau.

Nhận xét : Ta nhận thấy  không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.

Xét hệ phương trình:

Từ (1) với (3), trừ vế với vế ta có 2t = 6 => t = -3, thay vào (1) có t' = -2, từ đó d và d' có điểm chung duy nhất M(3 ; 7 ; 18). Do đó d và d' cắt nhau.

b) Ta có : (1 ; 1 ; -1) là vectơ chỉ phương của d và (2 ; 2 ; -2) là vectơ chỉ phương của d' .

Ta thấy  và  cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.

Lấy điểm M(1 ; 2 ; 3) ∈ d ta thấy M  d' nên d và d' song song.

30 tháng 3 2016

đẹp quá

31 tháng 3 2016

đẹp

18 tháng 4 2016

a)  Đường thẳng d đi qua M1( -3 ; -2 ; 6) và có vectơ chỉ phương (2 ; 3 ; 4).

Đường thẳng d' đi qua M2( 5 ; -1 ; 20) và có vectơ chỉ phương (1 ; -4 ; 1).

Ta có    = (19 ; 2 ; -11) ;  = (8 ; 1 ; 14) 

và  = (19.8 + 2 - 11.4) = 0

nên d và d' cắt nhau.

Nhận xét : Ta nhận thấy  không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.

Xét hệ phương trình:

Từ (1) với (3), trừ vế với vế ta có 2t = 6 => t = -3, thay vào (1) có t' = -2, từ đó d và d' có điểm chung duy nhất M(3 ; 7 ; 18). Do đó d và d' cắt nhau.

b) Ta có : (1 ; 1 ; -1) là vectơ chỉ phương của d và (2 ; 2 ; -2) là vectơ chỉ phương của d' .

Ta thấy  và  cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.

Lấy điểm M(1 ; 2 ; 3) ∈ d ta thấy M  d' nên d và d' song song.