\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+....+\left|x-100\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

ta có : \(C=\left|x-1\right|+\left|2-x\right|+\left|x-3\right|+\left|4-x\right|+...+\left|x-99\right|+\left|100-x\right|\)

\(\ge\left|x-1+2-x+x-3+4-x+...+x-99+100-x\right|=\left|50\right|=50\)

\(\Rightarrow C_{min}=50\)

dấu bằng xảy ra khi : \(x-1;x-2;x-3;...;x-100>0\Leftrightarrow x>100\)

vậy GTNN của \(C\)\(50\) khi \(x>100\)

21 tháng 8 2018

50

6 tháng 3 2020

Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\):

\(\left|x-1\right|+\left|x-100\right|\ge\left|\left(x-1\right)+\left(100-x\right)\right|=99\)

(Dấu "=" khi \(1\le x\le100\))

\(\left|x-2\right|+\left|x-99\right|\ge\left|\left(x-2\right)+\left(99-x\right)\right|=97\)

(Dấu "=" khi \(2\le x\le99\))

\(\left|x-3\right|+\left|x-98\right|\ge\left|\left(x-3\right)+\left(98-x\right)\right|=95\)

(Dấu "=" khi \(3\le x\le98\))

...

\(\left|x-49\right|+\left|x-50\right|\ge\left|\left(x-49\right)+\left(50-x\right)\right|=1\)

(Dấu "="\(\Leftrightarrow49\le x\le50\))

Vậy \(B\ge99+97+95+...+1=\frac{\left(99+1\right)\left[\left(99-1\right):2+1\right]}{2}\)

\(=2500\)

Dấu "=" khi \(49\le x\le50\)

26 tháng 10 2016

a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)

\(=\left|x-1\right|+\left|2-x\right|+2016\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)

Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)

b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)

Ta lại có: \(\left|x-2\right|\ge0\) (2)

Từ (1)(2) suy ra: \(B\ge2\)

Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)

24 tháng 2 2017

a) Ta có:

\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)

hay \(A\ge\left|1\right|+2016=1+2016=2017\)

=> \(A\ge2017\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.

24 tháng 2 2017

b) Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)

\(\Rightarrow B\ge\left|x\right|\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)

Để B nhỏ nhất

=> |x| phải nhỏ nhất (2)

Từ (1) và (2)

=> x=1

khi đó:

B=|x|=|1|=1

Vậy với x=1 thì B đạt GTNN và B=1.