\(\left|x-y\right|\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

\(\left(\dfrac{-5}{13}\right)^{2017}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(-\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(-\dfrac{5}{13}\right)\cdot\left[\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}\right]=\left(-\dfrac{5}{13}\right)\cdot1^{2016}=\left(-\dfrac{5}{13}\right)\cdot1=-\dfrac{5}{13}\)

11 tháng 8 2017

\(\left\{{}\begin{matrix}x\left(x+y+z\right)=7\\y\left(x+y+z\right)=3\\z\left(x+y+z\right)=15\end{matrix}\right.\) (đoán là đề vậy thôi vì bạn viết thiếu)

\(\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=7+3+15\)\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=25\)

\(\Rightarrow\left(x+y+z\right)^2=25\)

\(\Rightarrow x+y+z=\pm5\)

....

\(\left\{{}\begin{matrix}xy=\dfrac{6}{7}\\yz=\dfrac{7}{12}\\xz=2\end{matrix}\right.\)

\(\Rightarrow xy.yz.xz=\dfrac{6}{7}.\dfrac{7}{12}.2\)

\(\Rightarrow xyz^2=1\)

\(\Rightarrow xyz=\pm1\)

...

11 tháng 8 2017

tìm x,y,z

a,x(x+y+z)=7,y(x+y+z)=3,z(x+y+z)x(x+y+z)=7,y(x+y+z)=3,z(x+y+z)=6

b,xy=67,yz=712,xz=2

10 tháng 9 2017

Đăng từng bài một thôi bạn!

1)\(\left(-\dfrac{5}{13}\right)^{2017}.\left(\dfrac{13}{5}\right)^{2016}\)

\(=\left(-\dfrac{5}{13}\right).\left(-\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)

\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)

\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}.\dfrac{13}{5}\right)^{2016}\)

\(=\left(-\dfrac{5}{13}\right).1^{2016}\)

\(=-\dfrac{5}{13}\)

10 tháng 9 2017

Cám ơn bn nhìu. giúp mk mí bài kia nữa đc ko?

12 tháng 3 2017

Đề sai bạn nhé. Đưa dữ kiện 3 ẩn bắt tính biểu thức chứa 2 ẩn làm sao làm được ?

Bạn kiểm tra lại nha

12 tháng 3 2017

xin lỗi z chứ ko phải là 2

4 tháng 8 2017

- Từ đề bài

=>\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)

- Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)\(=\dfrac{x-y-x+y+xy}{1-7+24}=\dfrac{\left(x-x\right)+\left(-y+y\right)+xy}{18}=\dfrac{xy}{18}\)

=> xy \(\in\) bội chung của 18.

- Vậy xy \(\in\) bội chung của 18.

( mình làm theo cách của mình nên cx chưa phải là chính xác nhé.)

4 tháng 8 2017

Theo bài ra ta có : \(\left(x-y\right)\div\left(x+y\right)\div xy=1\div7\div24\)

\(\Rightarrow\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{\left(x-y\right)+\left(x+y\right)}{1+7}\\ =\dfrac{x-y+x+y}{8}\\ =\dfrac{\left(x+x\right)-\left(y-y\right)}{8}\\ =\dfrac{2x}{8}\\ =\dfrac{x}{4}\)

Tương tự :

\(\dfrac{x+y}{7}=\dfrac{x-y}{1}=\dfrac{\left(x+y\right)-\left(x-y\right)}{7-1}\\ =\dfrac{x+y-x+y}{6}\\ =\dfrac{\left(x-x\right)+\left(y+y\right)}{6}\\ =\dfrac{2y}{6}\\ =\dfrac{y}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xy}{24}=\dfrac{x}{4}\\\dfrac{xy}{24}=\dfrac{y}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4xy=24x\\3xy=24y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=\dfrac{24x}{4x}\\x=\dfrac{24y}{3y}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=6\\x=8\end{matrix}\right.\)

Vậy \(x;y=\left\{6;8\right\}\)

19 tháng 10 2017

\(\dfrac{y}{0,4}\) chuyển thành y.\(\dfrac{5}{2}\)=\(\dfrac{y+z}{4}\)

suy ra \(\dfrac{x}{4}\)=y=\(\dfrac{y+z}{10}\) y= \(\dfrac{y+z}{10}\) suy ra y=\(\dfrac{y}{10}+\dfrac{z}{10}\) suy ra \(\dfrac{9}{10}y=\dfrac{1}{10}z\) suy ra \(y=\dfrac{1}{9}z\) hay z=9y x+y+z=4y+y+9y=14y 14y=280 y=280:14=20 x=20.4=80 z=280-(20+80)=180 Tick mk nhathanghoa
19 tháng 10 2017

Bài 11: Tìm x, y, z:

a) x=4y=0,4(y+z)x=4y=0,4(y+z)x+y+z=280

a: ta có: A>0

=>x(x+4)>0

=>x>0 hoặc x<-4

b: Ta có: B>0

=>(x-3)(x+7)>0

=>x>3 hoặc x<-7

c: Ta có: C>0

\(\Leftrightarrow x^2\cdot\dfrac{1}{6}>0\)

hay x<>0

d: ta có: D<0

\(\Leftrightarrow x\left(x-\dfrac{2}{5}\right)< 0\)

=>0<x<2/5

e: Ta có: E<0

\(\Leftrightarrow\dfrac{x-2}{x-6}< 0\)

=>2<x<6