K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Bài làm

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

Mà \(\frac{49}{50}\)lại nhỏ hơn 1 nên \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\left(ĐPCM\right)\)

P/S : Các bạn thấy mình làm đúng không ? Nếu sau thì ibox cho mình nhé 

25 tháng 5 2017

Đặt dãy số đó là A ta có :

A = 1/1.2 + 1/2.3 + 1/3.4 + ... +1/49.50

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/48 - 1/49 + 1/49 - 1/50

A = 1 - 1/50 Vì 1 - 1/50 < 1

⇒ A  < 1

25 tháng 5 2017

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A=1-\frac{1}{100}\)

\(\Leftrightarrow A=\frac{99}{100}\)

        Vì \(\frac{99}{100}-2=-\frac{101}{100}\) là số âm

Nên \(\frac{99}{100}< 2\).Vậy ta được đpcm

25 tháng 5 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1< 2\)

25 tháng 5 2017

\(\frac{1}{38.39}+\frac{1}{40.41}+\frac{1}{42.43}+...+\frac{1}{100.101}< \frac{1}{4}\)

Đặt A = \(\frac{1}{38.39}+\frac{1}{40.41}+\frac{1}{42.43}+....+\frac{1}{100.101}\)

A = \(\frac{1}{38}-\frac{1}{39}+\frac{1}{40}-\frac{1}{41}+.....+\frac{1}{100}-\frac{1}{101}\)

A = \(\frac{1}{38}-\frac{1}{101}\)

A = \(\frac{63}{3838}\)

Ta thấy \(\frac{63}{3838}< \frac{1}{4}\Rightarrow A< \frac{1}{4}\)

25 tháng 5 2017

Lập luận: 1/38.39 = 1/38 - 1/39

1/40.41 = 1/40 - 1/41

1/42. 43 = 1/42 - 1/43

....

1/100.101 = 1/100 - 1/101

Gọi phép tính trên là A. Ta có:

1/38 - 1/39 + 1/40 - 1/41 + 1/42 - 1/43 + ...+ 1/100 - 1/101

= 1/38 - 1/101 , vì 1/38 - 1/101 < 1/4 nên phép tính trên bé hơn 1/4. (nếu cần kĩ hơn thì làm ra kết quả rồi so sánh luôn)

18 tháng 8 2019

\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \frac{9}{10}\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ 90-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=1\\ \frac{5}{2}:\left(X+\frac{206}{100}\right)=\frac{1}{2}\\ X+\frac{206}{100}=5\\ X=\frac{500}{100}-\frac{206}{100}\\ X=\frac{294}{100}=\frac{147}{50}\)

Vậy \(X=\frac{147}{50}\)

18 tháng 8 2019

( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ......+ 1/9 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89 . 1/2

( 1 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89/2

90 - 5/2 : ( x + 103/50 ) = 89/2

5/2 : ( x + 103/50 ) = 90 - 89/2

5/2 : ( x + 103/50 ) = 91/2

x + 103/50 = 5/2 : 91/2

x + 103/50 = 5/91

x = 5/91 - 103/50

x = -9,123/4550

5 tháng 1 2017

Bài 2:

a)Gọi \(UCLN\left(12n+1;30n+2\right)=d\)

Ta có:

\(\left[5\left(12n+1\right)\right]-\left[2\left(30n+2\right)\right]⋮d\)

\(\Rightarrow\left[60n+5\right]-\left[60n+4\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Suy ra \(\frac{12n+1}{30n+2}\) là phân số tối giản

b)Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

Ta có: \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< \)\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\left(1\right)\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\left(2\right)\)

Từ (1) và (2) suy ra \(B< A< 1\Rightarrow B< 1\)

Vậy ta có điều phải chứng minh

5 tháng 1 2017

Cảm ơn bạn!

8 tháng 8 2016

a)

\(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{50.51}\)

\(\Rightarrow A>\frac{1}{3^2}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{50}-\frac{1}{51}\)

\(\Rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{51}=\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)

Dễ thấy 1/9 > 1/51

=> 1/9 - 1/51 > 0

\(\Rightarrow a>\frac{1}{4}+\frac{1}{9}-\frac{1}{51}>\frac{1}{4}\)

=> A>1/4

 

8 tháng 8 2016

Cảm ơn nah

1 tháng 5 2017

B1: Tính nhanh:

\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{1}{10}\cdot\dfrac{-9}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)

\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{-9}{10}\cdot\dfrac{1}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)

\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{1}{2}+\dfrac{1}{7}\right)\)

\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{7}{14}+\dfrac{2}{14}\right)\)

\(E=\dfrac{-9}{10}\cdot1=\dfrac{-9}{10}\)

B2: Chứng tỏ rằng:

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)

Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow1-\dfrac{1}{100}=\dfrac{99}{100}\)

\(\dfrac{99}{100}< 1\)

\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)

Tick mình nha!hihi

6 tháng 2 2017

Ta có

-a/b=a/-b

=>a/-b=-a/b

6 tháng 2 2017

-a/-b=a/b

=>-a/-b=a/b

21 tháng 7 2016

\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{1998}\).Từ 1 đến 1998 có 1998 số. Nên vế phải có 1998 số hạng nên ta ghép thành 999 cặp như sau :

\(\frac{m}{n}=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+\left(\frac{1}{3}+\frac{1}{1996}\right)+.....+\left(\frac{1}{999}+\frac{1}{1000}\right)\)\(=\frac{1999}{1.1998}+\frac{1999}{2.1997}+\frac{1999}{3.1996}+.......+\frac{1999}{999.1000}\)

Quy đồng tất cả 999 phân số này ta được:

\(\frac{m}{n}=\frac{1999a_1+1999a_2+1999a_3+........+1999a_{997}+1999a_{9998}+1999a_{999}}{1.2.3.4.5.6.7.8.9..........1996.1997.1998}\)

Với \(a_1;a_2;a_3;...;a_{998};a_{999}\in N\)

\(\frac{m}{n}=\frac{1999.\left(a_1+a_2+a_3+.......+a_{997}+a_{998}+a_{999}\right)}{1.2.3...............1996.1997.1998}\)

Vì 1999 là số nguyên tố.Nên sau khi rút gọn,đưa về dạng phân số tối giản thì từ số vẫn còn thừa số 1999.

\(\Rightarrow m⋮1999\)