Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)
Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).

Theo mình nghĩ thì đề thiếu là tam giác ABC vuông tại A nhé!
Bạn xem lại đề!:)

Gọi a, b thuộc vòng tròn trên mà tích 2 số bất kì cạnh nhau luôn bằng 16.
\(a.b=16\)
Tích của số cạnh a hoặc b thì tích của số đó với a hoặc \(b = 16.\)
\(\Rightarrow\) Số cạnh a hoặc b chính là b hoặc a.
Mà \(16=1.16=2.8=4.4\)
Mà trong bài chỉ yêu cầu tìm số n thôi.
\(\Rightarrow n=4\)
Sao hổng ai trả lời zậy?????
Mấy bạn siu thông minh đâu rùi??????????????

\(\left\{{}\begin{matrix}P\left(x\right)=x+x^2-x^3+2x^3+2=x^3+x^2+x+2\\Q\left(x\right)=1+3x-x^2-4x+x^3=x^3-x^2-x+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}P\left(x\right)+Q\left(x\right)=2x^3+3\\P\left(x\right)-Q\left(x\right)=2x^2+2x+1\end{matrix}\right.\)

\(\left(\dfrac{-5}{13}\right)^{2017}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(-\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(-\dfrac{5}{13}\right)\cdot\left[\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}\right]=\left(-\dfrac{5}{13}\right)\cdot1^{2016}=\left(-\dfrac{5}{13}\right)\cdot1=-\dfrac{5}{13}\)
Ta có: P(x)=0
\(\Rightarrow x^2+2=0\)
\(\Rightarrow x^2=-2\)
Với mọi giá trị của \(x\in R\) ta có \(x^2\ge0\)mà -2<0 nên không tìm được giá trị nào của x thoả mãn \(x^2=-2\)
Vậy biểu thức P(x) vô nghiệm
Chúc bạn học tốt!!!
Nếu P(x) có nghiệm,giả sử ghiệm x=\(x_0\)
Ta có:
P(\(x_0\))=\(x_0^2\)+2=0
<=> \(x_0^2\) =-2
Mà ta thấy \(k^2\)\(\ge0\) (k \(\in R\))mà \(x_0^2\)<0=>\(∄\)\(x_0\)thỏa mãn
Vậy biểu thức P(x) vô nghiệm