Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^4-x^3+6x^2-x+a\right)⋮\left(x^2-x+5\right)=x^2+1\) (dư a - 5)
Để đa thức chia hết \(\Leftrightarrow a-5=0\Leftrightarrow a=5\)
b) \(\left(2x^3-3x^2+x+a\right)⋮\left(x+2\right)=2x^2-7x+15\) (dư a - 30)
Để đa thức chia hết \(\Leftrightarrow a-30=0\Leftrightarrow a=30\)
x^4 -x^3+6x^2-x+a x^2-x+5 x^2 x^4-x^3+5x^2 x^2 +1 x^2 -x+a -x+5 a-5
\(x^4-x^3+6x^2-x+a=\left(x^2+1\right)\left(x^2-x+5\right)+a-5\)
Để đa thức \(x^4-x^3+6x^2-x+a\) chia hết cho đa thức \(x^2-x+5\)
\(\Rightarrow a-5=0\Leftrightarrow a=5\)
b, Đặt \(2x^3-3x^2+x+a=f\left(x\right)\) và \(x+2=g\left(x\right)\)
Theo dịnh lí Bơ du ta có
Xét \(g\left(x\right)=0\Rightarrow x+2=0\Rightarrow x=-2\)
Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(f\left(-2\right)=0\)
\(f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2-2+a=0\)
\(\Rightarrow f\left(x\right)=-16-12-2+a=0\)
\(\Rightarrow f\left(x\right)=-30+a=0\)
\(\Rightarrow a=30\)
Vậy \(a=30\) thì \(f\left(x\right)\) chia hết cho \(g\left(x\right)\)
Câu b) Thay x=-2 vào rồi giải theo phương pháp giá trị riêng
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
-1 và 1 là hai nghiệm của đa thức \(x^2-1\)
Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)
Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)
Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)
Vậy a = -2, b = 1
giúp tôi với :((