\(\frac{1}{2\sqrt{3}-5}\)_\(\frac{1}{2\sqrt{3}+5}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

Ta có: \(\frac{1}{2\sqrt{3}-5}-\frac{1}{2\sqrt{3}+5}\)

\(=\frac{2\sqrt{3}+5-2\sqrt{3}+5}{\left(2\sqrt{3}-5\right)\left(2\sqrt{3}+5\right)}\)

\(=\frac{10}{\left(2\sqrt{3}\right)^2-5^2}\)

\(=\frac{10}{12-25}=\frac{-10}{13}\)

\(\Rightarrow\)Chọn A

27 tháng 5 2017

chú ý\(x=\sqrt{x}^2\) tương tự với y , và các số tự nhiên dương

\(A=\frac{\sqrt{x}^2+2\sqrt{x}-3}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)}=\sqrt{x}+3\)

\(B=\frac{\left(2\sqrt{y}\right)^2+3\sqrt{y}-7}{4\sqrt{y}+7}=\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}=\sqrt{y}-1\)

\(C=\frac{\sqrt{x}^2\sqrt{y}-\sqrt{y}^2\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)

\(D=\frac{\sqrt{x}^2-3\sqrt{x}-4}{\sqrt{x}^2-\sqrt{x}-12}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)}\)

\(E=\sqrt{1+2\sqrt{5}+5}+\sqrt{\sqrt{5}-2\sqrt{5}+1}=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

=>\(E=1+\sqrt{5}+\sqrt{5}-1=2\sqrt{5}\)

CÂU CUỐI chưa làm đc

28 tháng 5 2017

ý cuối cùng này :

\(D=\sqrt{13-4\sqrt{10}}+\sqrt{13+4\sqrt{10}}\)lấy bình phương 2 vế ta có

\(D^2=13-4\sqrt{10}+13+4\sqrt{10}+2\sqrt{13-4\sqrt{10}}\sqrt{13+4\sqrt{10}}\)

\(D^2=26+2\sqrt{13^2-16\sqrt{10}^2}\Leftrightarrow D^2=26+2\sqrt{9}\)

\(D^2=32\Leftrightarrow D=\sqrt{32}=4\sqrt{2}\)

10 tháng 8 2017

1)

dat \(a=\sqrt[3]{x+1};b=\sqrt[3]{7-x}\)

ta co b=2-a

a^3+b^3=x+1+7-x=8 

a^3+b^3=a^3+b^3+3ab(a+b)

ab(a+b)=0

suy ra a=0 hoac b=0 hoac a=-b

<=> x=-1; x=7 

a=-b

a^3=-b^3

x+1=x+7 (vo li nen vo nghiem)

cau B tuong tu

2)

tat ca cac bai tap deu chung 1 dang do la

\(\sqrt[3]{a+m}+\sqrt[3]{b-m}\)voi m la tham so

dang nay co 2 cach 

C1 lap phuong VD: \(B^3=10+3\sqrt[3]{< 5+2\sqrt{13}>< 5-2\sqrt{13}>}\left(B\right)\)

B^3=10-9B

B=1 cach nay nhanh nhung kho nhin

C2 dat an

\(a=\sqrt[3]{5+2\sqrt{13}};b=\sqrt[3]{5-2\sqrt{13}}\)

de thay B=a+b

a^3+b^3=10

ab=-3

B^3=10-9B

suy ra B=1

tuong tu giai cac cau con lai.

10 tháng 8 2017

Bài 1:

a. Đặt \(a=\sqrt[3]{x+1}\)\(b=\sqrt[3]{7-x}\). Ta có:

\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}\Leftrightarrow a^3+\left(2-a\right)^3=8\Leftrightarrow...\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a=0\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=0\\\sqrt[3]{7-x}=2\end{cases}}\)hoặc \(\hept{\begin{cases}\sqrt[3]{x+1}=2\\\sqrt[3]{7-x}=0\end{cases}}\)

\(\Leftrightarrow x=-1\)hoặc \(x=7\)

19 tháng 10 2020

a) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)

\(=\frac{3\left(2-\sqrt{3}\right)}{2^2-3}+\frac{13\left(4+\sqrt{3}\right)}{4^2-3}+\frac{6\sqrt{3}}{3}\)

\(=3\left(2-\sqrt{3}\right)+\left(4+\sqrt{3}\right)+2\sqrt{3}\)

\(=3.2+4=6+4=10\)

b) \(=\left[\frac{\left(\sqrt{14}-\sqrt{7}\right)\left(\sqrt{2}+1\right)}{2-1}+\frac{\left(\sqrt{15}-\sqrt{5}\right)\left(\sqrt{3}+1\right)}{3-1}\right]:\frac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=2\) (nhân bung mấy cái trong ngoặc vuông ra, rút gọn)

c) Gợi ý: \(28-10\sqrt{3}=5^2-2.5.\sqrt{3}+\sqrt{3}=\left(5-\sqrt{3}\right)^2\)

d) \(=\frac{3\left(3-2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}+\frac{3\left(3+2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}=-6\)

e) Tự làm.

20 tháng 10 2020

Cái câu c đánh nhầm:

\(=5^2-2.5.\sqrt{3}+3=\left(5-\sqrt{3}\right)^2\) nha!

25 tháng 6 2017

a) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}}{\sqrt{3}}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\left(\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}\right)\cdot3}}{3}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}\)

\(=\dfrac{\sqrt{3}+\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}+\dfrac{\sqrt{2}}{6}\)

b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=...\)

c) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=...\)

d) \(\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+1+2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{4}\)

\(=\dfrac{\sqrt{3\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{2}\)

\(=\dfrac{\sqrt{3-\sqrt{3}-1}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)

\(=\dfrac{\sqrt{\left(3-\sqrt{3}-1\right)\cdot\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+2\sqrt{12}+2\right)}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+4\sqrt{3}+2\right)}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(8+4\sqrt{3}\right)}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}}{2}\)

\(=\dfrac{\sqrt{\left(4-3\right)\cdot4}}{2}\)

\(=\dfrac{\sqrt{1\cdot4}}{2}\)

\(=\dfrac{2}{2}\)

\(=1\)

21 tháng 10 2016

A = \(\sqrt[3]{10+6\sqrt{3}}+\sqrt[3]{10-6\sqrt{3}}\)

<=> A3 = 20 - 3×2A

<=> A3 + 6A - 20 = 0

<=> A = 2

21 tháng 10 2016

2 câu còn lại làm tương tự 

5 tháng 8 2017

\(A=\sqrt{2+2\sqrt{\frac{3}{4}}}+\sqrt{2-2\sqrt{\frac{3}{4}}}\)

\(A=\sqrt{\left(\sqrt{\frac{3}{2}}\right)^2+2\sqrt{\frac{3}{2}.\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{3}{2}}\right)^2-2\sqrt{\frac{3}{2}.\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}\)

\(A=\sqrt{\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)^2}\)

\(A=\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\)

\(A=2\sqrt{\frac{3}{2}}=\sqrt{4.\frac{3}{2}}=\sqrt{6}\)

22 tháng 5 2018

\(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=|2+\sqrt{3}|+|2-\sqrt{3}|\)\(=2+\sqrt{3}+2-\sqrt{3}=4\)