\(50!=1\times2\times3\times...\times49\times50\) có bao nhiêu chữ số 0 tận cùng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

BT1: 20152014 có tận cùng là 5

    20142015=2014.(20142)1007=2014.40561961007=2014.(...6) => Có tận cùng là ...4

=> 20152014-20142015 có tận cùng là ...5-...4=...1 

BT2: f(1)=a.1+b=1  (1)

       f(2)=a.2+b=4    (2)

Trừ (2) cho (1) => a=3

Thay a=3 vào (1) => b=-2

ĐS: a=3; b=-2

23 tháng 2 2017

Sao ko ai trả lời vậy?! Bộ câu của mình khó quá ak???

Kết quả ra có số 0 phía sau khi trong tích tồn tại những số có số 0

Ở trường hợp này có các nguyên nhân là số có số 0 và 5 là 10,20,...90,100. Tạo ra 11 chữ số 0. Và ở mỗi bậc có kết quả của phép 5,15,...45,55,...95 là 10 nữa. Và số 25x4 ta được 100, 50x2 ta được 100, 75x4 ta được 300 nên ta được thêm 3 chữ số 0 nữa. Vậy có 24 chữ số 0 ở cuối

k cho mik nha

16 tháng 1 2017

Bài 1:

\(A=1\cdot2+2\cdot3+...+n\left(n+1\right)\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(3A=n\left(n+1\right)\left(n+2\right)\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bài 2:

\(B=1^2+2^2+...+n^2\)

\(B=1\left(2-1\right)+2\left(3-1\right)+...+n\left[\left(n+1\right)-1\right]\)

\(B=\left[1\cdot2+2\cdot3+...+n\left(n+1\right)\right]-\left(1+2+...+n\right)\)

\(B=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)

\(B=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

8 tháng 2 2018

Chữ số tận cùng của \(2^{202}\) là 4.

Chữ số tận cùng của biểu thức A: là 7

28 tháng 8 2018

Ta có \(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)...... , \(\frac{1}{97.98}-\frac{1}{98.99}=\frac{2}{97.98.99}\)

vậy 2 xA = \(\frac{2}{1.2.3.}\) -\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)-.\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\).....-\(\frac{1}{97.98}\)+\(\frac{1}{98.99}\)

=1/3-1/6+1/(98.99) =1/6 +1/(98.99)

=> A = 1/12+\(\frac{1}{2.98.99}\)