K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

a, Để \(\sqrt{\left(x-1\right)\left(x-3\right)}\) xác định thì (x-1)(x-3)\(\ge\)0

TH1: \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ge3\end{matrix}\right.\Leftrightarrow}x\ge3}\)TH2:\(\left\{{}\begin{matrix}x-1\le0\\x-3\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\le3\end{matrix}\right.\Leftrightarrow}x\le1}\) Vậy nếu \(x\ge3\) hoặc \(x\le1\) thì biểu thức có nghĩa

b, Để \(\sqrt{x^2-4}=\sqrt{\left(x-2\right)\left(x+2\right)}\)có nghĩa thì (x-2)(x+2)\(\ge0\)

TH1: \(\left\{{}\begin{matrix}x-2\ge0\\x+2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ge-2\end{matrix}\right.\Leftrightarrow x\ge}2}\)TH2:\(\left\{{}\begin{matrix}x-2\le0\\x+2\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\le-2\end{matrix}\right.\Leftrightarrow}x\le-2}\)Vậy nếu \(x\ge2\) hoặc \(x\le-2\) thì biểu thức có nghĩa

10 tháng 8 2016

a)\(\sqrt{\left(x-1\right)\left(x-3\right)}\ge0\)

\(\Rightarrow\left(x-1\right)\left(x-3\right)\ge0\)

\(\Rightarrow1\le x\le3\)

b)\(\sqrt{x^2-4}\)

\(=\sqrt{x^2-2^2}=\sqrt{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow\left(x-2\right)\left(x+2\right)\ge0\)

\(\Rightarrow-2\le x\le2\)

c)\(\sqrt{\frac{x-2}{x+3}}=\frac{\sqrt{x-2}}{\sqrt{x+3}}\)

\(\Rightarrow\sqrt{x-2}\ge0\)

\(\Rightarrow x\ge2\)

\(\Rightarrow\sqrt{x+3}>0\)

\(\Rightarrow x+3>0\Leftrightarrow x>-3\)

\(\Rightarrow x\in\left(-\infty;-3\right)\)U[\(2;\infty\))

d)\(\sqrt{\frac{2+x}{5-x}}=\frac{\sqrt{2+x}}{\sqrt{5-x}}\)

\(\Rightarrow\sqrt{2+x}\ge0\)

\(\Rightarrow2+x\ge0\)

\(\Rightarrow x\ge-2\)

\(\Rightarrow\sqrt{5-x}>0\)

\(\Rightarrow5-x>0\Leftrightarrow x>5\)

\(\Rightarrow x\in\)[-2;5)

 

 

 

 

11 tháng 8 2016

a) ĐKXĐ : \(\left(x-1\right)\left(x-3\right)\ge0\Leftrightarrow\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\)hoặc \(\begin{cases}x-1\le0\\x-3\le0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge3\\x\le1\end{array}\right.\)

b) \(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow\left|x\right|\ge2\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)

c) \(\frac{x-2}{x+3}\ge0\Leftrightarrow\begin{cases}x-2\ge0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-2\le0\\x+3< 0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x< -3\end{array}\right.\)

d) \(\frac{2+x}{5-x}\ge0\) \(\Leftrightarrow\begin{cases}2+x\ge0\\5-x>0\end{cases}\) hoặc \(\begin{cases}2+x\le0\\5-x< 0\end{cases}\)

\(\Leftrightarrow-2\le x< 5\)

24 tháng 6 2018

\(a,x\ge2\)

\(b,x\ge-2\)

\(c,x\ge3\)

\(d,x\ge2\)

24 tháng 6 2018

bạn nhi nguyễn "T ích sai cho mình " chứng tỏ bạn rất oc cko :))

Câu 1: 

a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\) 

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)

hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)

Câu 1: 

a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\) 

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)

hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

Bài 1: Thực hiện phép tính a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\) b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\) d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\) Bài 2: Rút gọn biểu thức sau \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Thực hiện phép tính

a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)

b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)

c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)

d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)

Bài 2: Rút gọn biểu thức sau

\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)

Bài 3: Cho biểu thức sau

A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)\(x\ne4\)

a) Rút gọn A b) Tìm x để A=-3

Bài 4: Rút gọn biểu thức sau

A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\)\(x\ne1\)

Bài 5: Cho biểu thức

C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1

Bài 6: Giải phương trình

a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)

d) \(\sqrt{4\left(x+2\right)^2}=8\)

1
29 tháng 11 2022

Bài 6:

a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)

=>x^2+4=12

=>x^2=8

=>\(x=\pm2\sqrt{2}\)

b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>x+1=1

=>x=0

c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)

=>\(\sqrt{2x}=2\)

=>2x=4

=>x=2

d: \(\Leftrightarrow2\left|x+2\right|=8\)

=>x+2=4 hoặcx+2=-4

=>x=-6 hoặc x=2

2 tháng 9 2018

bài 2 : chữa đề câu a chút nha

a) ta có : \(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}\)

\(\sqrt{\left(\dfrac{2}{\sqrt{5}-2}\right)^2}-\sqrt{\left(\dfrac{2}{\sqrt{5}+2}\right)^2}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\)

\(=\dfrac{2\sqrt{5}+4-2\sqrt{5}+4}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\dfrac{8}{5-4}=8\left(đpcm\right)\)

b) ta có : \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)^2=\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)=2\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\) \(=2\left(9-5\right)=2.4=8\left(đpcm\right)\)

Bài 1 : Mình gợi ý thôi nhé :v

\(C=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2+5}{\sqrt{x}-2}=1+\dfrac{5}{\sqrt{x}-2}\)

\(D=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}=\dfrac{2\left(\sqrt{x}+3\right)-7}{\sqrt{x}+3}=2-\dfrac{7}{\sqrt{x}+3}\)

Bài 1:

a: \(=\sqrt{7}-2+2=\sqrt{7}\)

b: \(=\left(5\sqrt{5}-3\sqrt{3}\right)\cdot\dfrac{\sqrt{5}+\sqrt{3}}{8+\sqrt{15}}\)

\(=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(8+\sqrt{15}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)}{8+\sqrt{15}}\)

=5-3=2

a: \(A=\dfrac{\sqrt{3}+1}{\sqrt{3}+1}+\sqrt{5}+3-3-\sqrt{5}=1\)

b: \(B=\dfrac{-\sqrt{x}-3+x-3\sqrt{x}-x-9}{x-9}=\dfrac{-4\sqrt{x}-12}{x-9}=\dfrac{-4}{\sqrt{x}-3}\)

Để B>1 thì \(\dfrac{-4-\sqrt{x}+3}{\sqrt{x}-3}>0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay 0<x<9