K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

\(P=5x^2-4xy+8x+y^2+17\)

\(P=4x^2-4xy+y^2+x^2+8x+16+1\)

\(P=\left(2x-y\right)^2+\left(x+4\right)^2+1\)

Vậy: MinP là 1 khi x=-4, y=-8

14 tháng 3 2017

mơn bạn nhìu :)

16 tháng 9 2017

a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y

=5x3-7x2y+2xy2+5x-2y

b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-2x+20\)

16 tháng 9 2017

c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)

=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)

d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)

=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)

=\(-5x+4x-15\)

=\(-x-15\)

Chúc bạn học tốt(mỏi tay quá)

16 tháng 5 2017

Ta có: (a2 + b2)(x2 + y2) = (ax + by)2

<=> a2x2 + a2y2 + b2x2 + b2y2 = a2x2 + 2axby + b2y2

<=> a2x2 + a2y2 + b2x2 + b2y2 - a2x2 - 2axby - b2y2 = 0

<=> (a2y2 - axby) + (b2x2 - axby) = 0

<=> ay(ay - bx) - bx(ay - bx) = 0

<=> (ay - bx)2 = 0

<=> ay - bx = 0

Vậy bài toán đã được chứng minh

17 tháng 5 2017

Sửa đề: thì \(ay-bx=0\)

Giải:

Xét hiệu: \(\left(a^2+b^2\right)\left(x^2+y^2\right)-\left(ax+by\right)^2\)

\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-b^2y^2\) \(-2axby\)

\(=a^2y^2-2axby+b^2x^2\)

\(=\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\) (Đpcm)

16 tháng 7 2017

Bài 1:

a, \(2x\left(y-z\right)+5y\left(z-y\right)=2x\left(y-z\right)-5y\left(y-z\right)\)

\(=\left(y-z\right)\left(2x-5y\right)\)

b, \(x^3-3x^2+3x-1=x^3-x^2-2x^2+2x+x-1\)

\(=x^2.\left(x-1\right)-2x.\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1\right)=\left(x-1\right)\left(x^2-x-x+1\right)\)

\(=\left(x-1\right)\left(x-1\right)^2=\left(x-1\right)^3\)

c, \(7x^2-7xy-4x+4y=7x.\left(x-y\right)-4.\left(x-y\right)\)

\(=\left(x-y\right)\left(7x-4\right)\)

d, \(x^2-6x+8=x^2-2x-4x+8\)

\(=x.\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\)

Chúc bạn học tốt!!!

16 tháng 7 2017

1)

a) \(2x\left(y-z\right)+5y\left(z-y\right)\)

\(=2x\left(y-z\right)-5y\left(y-z\right)\)

\(=\left(y-z\right)\left(2x-5y\right)\)

b) \(x^3-3x^2+3x-1\)

\(=x^3-3.x^2.1+3.x.1^2-1^3\)

\(=\left(x-1\right)^3\)

c) \(7x^2-7xy-4x+4y\)

\(=7x\left(x-y\right)-4\left(x-y\right)\)

\(=\left(x-y\right)\left(7x-4\right)\)

d) \(x^2-6x+8\)

\(=x^2-4x-2x+8\)

\(=x\left(x-4\right)-2\left(x-4\right)\)

\(=\left(x-4\right)\left(x-2\right)\)

2)

a) \(\left(5x^2+3x-1\right)\left(x+3\right)\)

\(=5x^3+3x^2-x+15x^2+9x-3\)

\(=5x^3+3x^2+15x^2-x+9x-3\)

\(=5x^3+18x^2+8x-3\)

b) \(\left(x^3+2x^2+3x-1\right):\left(x^2-2\right)\)

\(=x+2+\dfrac{5x+3}{x^2-2}\)

19 tháng 8 2017

a, \(A=5x-x^2=-x^2+5x=-x^2+2x\cdot2,5-\dfrac{25}{4}+\dfrac{25}{4}\)

\(=-\left(x-2,5\right)^2+\dfrac{25}{4}\)

Có: \(-\left(x-2,5\right)^2\le0\forall x\)

=> \(-\left(x-2,5\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

''='' xảy ra khi \(x-2,5=0\Rightarrow x=2,5\)

Vậy \(A_{MAX}=\dfrac{25}{4}\Leftrightarrow x=2,5\)

b, \(B=x-x^2=x^2-x=x^2-2\cdot x\cdot\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)

Lập luận như câu a

c, \(C=4x-x^2+3=-x^2+2\cdot x\cdot2-4+7\)

\(=-\left(x-2\right)^2+7\)

\(-\left(x-2\right)^2\le0\forall x\)

=> \(-\left(x-2\right)^2+7\le7\)

Dấu ''='' xảy ra khi và chỉ khi x = 2

Vậy \(C_{MAX}=7\Leftrightarrow x=2\)

19 tháng 8 2017

d, \(D=-x^2+6x-11=-x^2+2\cdot x\cdot3-9-2\)

\(=-\left(x-3\right)^2-2\)

\(-\left(x-3\right)^2\le0\forall x\)

=> \(-\left(x-3\right)^2-2\le-2\)

Dấu ''='' xảy ra khi và chỉ khi x - 3 = 0 => x = 3

Vậy \(D_{MAX}=-2\Leftrightarrow x=3\)

e, \(E=5-8x-x^2=-x^2-8x+5=-x^2-2\cdot x\cdot4-16+21\)

\(=-\left(x+4\right)^2+21\)

Lập luận như trên

f, \(F=4x-x^2+1=-x^2+4x+1=-x^2+2\cdot x\cdot2-4+5\)

\(=-\left(x-2\right)^2+5\)

Tượng tự mấy ý trc

22 tháng 10 2017

Đặt tính \(2n^2-n+2\) : \(2n+1\) sẽ bằng n - 1 dư 3

Để chia hết thì 3 phải chia hết cho 2n + 1 hay 2n + 1 là ước của 3

Ư(3) = {\(\pm\) 3; \(\pm\) 1}

\(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)

\(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

\(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)

\(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)

Vậy \(n=\left\{0;-2;\pm1\right\}\)

11 tháng 10 2017

oho

Câu 1: Tìm x, biết: a, 3x(12x - 4) - 9x(4x - 3) = 30 b, 2x(x - 1) + x(5 - 2x) = 15 Câu 2: Điền vào chỗ trống để được kết quả đúng. a, (x2 - 2xy)(-3x2y) =....... b, x2(x - y) + y(x2 + y) =....... Câu 3: Điền vào chỗ trống để được kết quả đúng. a, 4x2 + 4x + 1 =......... b, (x + y)2 - 2(x + y) +1 =....... Câu 4: Viết các đa thức sau dưới dạng bình phương của một tổng: a, (2x - 3y)2 + 2(2x +3y) + 1 b, x2 + 4xy +...
Đọc tiếp

Câu 1: Tìm x, biết:

a, 3x(12x - 4) - 9x(4x - 3) = 30

b, 2x(x - 1) + x(5 - 2x) = 15

Câu 2: Điền vào chỗ trống để được kết quả đúng.

a, (x2 - 2xy)(-3x2y) =.......

b, x2(x - y) + y(x2 + y) =.......

Câu 3: Điền vào chỗ trống để được kết quả đúng.

a, 4x2 + 4x + 1 =.........

b, (x + y)2 - 2(x + y) +1 =.......

Câu 4: Viết các đa thức sau dưới dạng bình phương của một tổng:

a, (2x - 3y)2 + 2(2x +3y) + 1

b, x2 + 4xy + 4y2

Câu 5: Chứng minh đẳng thức:

(a - b)2 = (a + b)2 - 4ab

Câu 6: Điền vào chỗ trống để được kết quả đúng:

a, 8x6 + 36x4y + 54x2y2 + 27y3 =..........

b, x3 - 6x2y + 12xy2 - 8y3

Câu 7: Rút gọn biểu thức:

A = (x - 3x + 9)(x + 3) - (54 + x3)

Câu 8: Viết biểu thức sau dưới dạng tích:

a, 8x3 - y3

b, 27x3 + 8

Câu 9: Chứng minh đẳng thức:

(a + b)3 - 3ab(a + b) = a3 + b3

Câu 10: Điền vào chỗ trống để được đẳng thức đúng:

a, (2x)3 + y3 =...........

b, (a - b)(............................) = a3 + b3

Câu 11: Rút gọn biểu thức:

A = (x + 3)(x2 - 3x + 9) - (54 + x3)

Câu 12: Chứng minh rằng: a3 - b3 = (a - b)3 + (a - b)3 + 3ab(a - b)

Câu 13: Tính giá trị của biểu thức: y2 + 4y + 4 tại y = 98

Tuy là đề dài, nhưng em mong có một ai đó có thể bỏ ra chút thời gian để giúp em giải được đề bài này. Nếu được em xin chân thành cảm ơn mọi người nhiều !! leuleuleuleuleuleuleuleuleuleu

2
22 tháng 9 2017

Câu 1. Tìm x, biết:

\(a.3x\left(12x-4\right)-9x\left(4x-3\right)=30\)

\(36x^2-12x-36x^2+27x=30\)

\(15x=30\)

\(x=2\)

\(b.2x\left(x-1\right)+x\left(5-2x\right)=15\)

\(2x^2-2x+5x-2x^2=15\)

\(3x=15\)

\(x=5\)

Câu 2. Điền vào chỗ trống để được kết quả đúng.

\(a.\left(x^2-2xy\right)\left(-3x^2y\right)=-3x^4y+6x^3y^2\)

\(b.x^2\left(x-y\right)+y\left(x^2+y\right)=x^3+y^2\)

Câu 3. Điền vào chỗ trống để được kết quả đúng.

\(a.\left(2x+1\right)^2\)

\(b.\left(x+2y\right)^2\)

Câu 4. Viết các đa thức sau dưới dạng bình phương của một tổng:

\(a.\left(2x-3y\right)^2+2\left(2x+3y\right)+1=\left(2x-3y+1\right)^2\)

\(b.x^2+4xy+4y^2=\left(x+2y\right)^2\)

Câu 5. Chứng minh đẳng thức:

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)

Vậy đẳng thức đã được chứng minh ( làm tóm gọn thôi , trình bày vào vở thì tự nhé )

Câu 6. Điền vào chỗ trống để được kết quả đúng:

\(a.8x^6+36x^4y+54x^2y^2+27y^3=\left[\left(2x^2\right)+3y\right]^3\)

\(b.x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)

Câu 11. Rút gọn biểu thức:

\(A=\left(x^2-3x+9\right)\left(x+3\right)-\left(54+x^3\right)\)

\(A=x^3+27-54-x^3=-27\)

Câu 8. Viết biểu thức sau dưới dạng tích:

\(a.8x^3-y^3=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(b.27x^3+8=\left(3x+2\right)\left(9x^2-6x+4\right)\)

Câu 9. Chứng minh đẳng thức:

\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)

Vậy đẳng thức đã được chứng minh ( làm tóm gọn thôi , trình bày vào vở thì tự nhé )

Câu 10. Điền vào chỗ trống để được đẳng thức đúng:

\(a.\left(2x\right)^3+y^3=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(b.\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3\)

Câu 7. Rút gọn biểu thức:

\(A=\left(x+3\right)\left(x-3x+9\right)-\left(54+x^3\right)=3x-2x^2+27-54-x^3=3x-2x^2-27-x^3\)

( Chắc rút vậy là hết cỡ rồi ==" )

22 tháng 9 2017

Câu 12 . Coi lại đề @@

Câu 13 .

\(y^2+4y+4=\left(2+y\right)^2=\left(98+2\right)^2=100^2=10000\)

21 tháng 11 2017

vcl chết đi

tự mà mua sách giải

18 tháng 6 2017

\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)

= \(z^2\)

18 tháng 6 2017

Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2

=[(x+y+z)-(x+y)]2=z2