Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(3-x^2+2x\)
\(=-\left(x^2-2x-3\right)\)
\(=-\left(x^2-2.x.1+1-4\right)\)
\(=-\left(\left(x-1\right)^2-4\right)\)
\(=4-\left(x-1\right)^2\le4\)
Vậy \(MAXB=4\Leftrightarrow x-1=0\Rightarrow x=1\)
\(P=14-\left(2x-5\right)^2\)
Có: \(\left(2x-5\right)^2\ge0\Rightarrow14-\left(2x-5\right)^2\le14\)
Dấu = xảy ra khi: \(\left(2x-5\right)^2=0\Rightarrow2x-5=0\Rightarrow x=\frac{5}{2}\)
Vậy: \(Max_P=14\) tại \(x=\frac{5}{2}\)
B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)
\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)
\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)