Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số nguyên a là số hữu tỉ vì ta có thể viết a = \(\frac{a}{1}\)
3. Với a, b ∈ Z, b # 0
- Khi a, b cùng dấu thì a/b > 0
- Khi a, b khác dấu thì a/b < 0
Kết luận: Số hữu tỉ a/b (a, b ∈ Z, b # 0) dương nếu a, b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0.
a) Số hữu tỉ là số được viết dưới dạng \(\frac{a}{b}\)
d) \(\frac{2}{7}=\frac{18}{63}\) ; \(\frac{4}{9}=\frac{28}{63}\) Vì 18 < 28 mà 63 = 63
=> \(\frac{2}{7}< \frac{4}{9}\)
\(\frac{-17}{25}=\frac{-476}{700}\) ; \(\frac{-14}{28}=\frac{-350}{700}\) Vì -476 < -350 mà 700=700
=> \(\frac{-17}{25}< \frac{-14}{28}\)
Mình làm câu a
\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31
18/31=181818/313131
Ta có: \(\frac{a}{b}=\frac{a.\left(b+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001a}{b^2+2001b}\)
\(\frac{a+2001}{b+2001}=\frac{b.\left(a+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001b}{b^2+2001b}\)
*TH1: a=b
=>\(\frac{a}{b}=\frac{a+2001}{b+2001}=1\)
*TH2: a<b
=>ab+2001a<ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}< \frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}< \frac{a+2001}{b+2001}\)
TH3:a>b
=>ab+2001a>ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}>\frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Qui đồng mẫu số:
\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> \(\frac{a}{b}<\frac{a+2001}{b+2001}\)
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
\(\dfrac{a}{b}=\dfrac{a\left(b+2021\right)}{b\left(b+2021\right)}=\dfrac{ab+2021a}{b\left(b+2021\right)}\\ \dfrac{a+2021}{b+2021}=\dfrac{ab+2021b}{b\left(b+2021\right)}\)
Vì \(b>0\Rightarrow b\left(b+2021\right)>0\)
Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2021}{b+2021}\)
Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2021}{b+2021}=1\)
Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2021}{b+2021}\)