K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)

\(\Rightarrow-a^2-ab+ac+bc=a^2-ab+ac-bc\)

\(\Rightarrow bc=a^2\) -->Đpcm

 

 

 

 

1 tháng 1 2018

Ta có: 

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ac-ad=ac-bc\)

\(\Rightarrow a\left(c-d\right)=c\left(a-b\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

Vậy \(\frac{a}{a-b}=\frac{c}{c-d}\)

1 tháng 1 2018

Ta có :

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ac-ad=ac-bc\)

\(\Rightarrow a\left(c-d\right)=c\left(a-b\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

\(KL:\frac{a}{a-b}=\frac{c}{c-d}\)

23 tháng 8 2016

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)

\(\Rightarrow2ab=ac+bc\Rightarrow ab-bc=ac-ab\Rightarrow b\left(a-c\right)=a\left(c-b\right)\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(dpcm\right)\)

2 tháng 7 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng dãy tỉ số bằng nhau:

 \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

2 tháng 7 2018

Có \(\frac{a}{b}=\frac{c}{d}\)\(\left(a;b;c;d\ne0\right)\)

\(\Rightarrow a=b=c=d\)

Lại có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Vì \(a=b=c=d\)nên \(\frac{a+b}{a-b}=\frac{b+c}{b-c}=\frac{c+d}{c-d}\)

Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)( đpcm )

2 tháng 12 2016

Đặt\(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk ;c=dk\)

\(\Rightarrow\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

     \(\frac{c-d}{d}=\frac{dk-d}{kd}=\frac{d\left(k-1\right)}{kd}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2)=> \(\frac{a-b}{a}=\frac{c-d}{c}\)

11 tháng 8 2016

\(a+b+c\ne0\) biết a = 2003

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

\(\frac{a}{b}=\frac{c}{a}\Rightarrow bc=a^2=2003^2\)

\(\Rightarrow b=2003;c=2003\\\)

Vậy b = 2003;c = 2003

11 tháng 8 2016

ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\begin{cases}=>a=b\\=>b=c\\=>c=a\end{cases}=>a=b=c}\)

\(b=2003;c=2003\)