K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 10 2021

\(x^2-6x+1=0\)

Ta thấy \(x=0\)không thỏa mãn phương trình trên. 

Với \(x\ne0\)ta chia cả hai vế cho \(x\)ta được: 

\(x-6+\frac{1}{x}=0\)

\(\Leftrightarrow x+\frac{1}{x}=6\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2=6^2\)

\(\Leftrightarrow x^2+\frac{1}{x^2}+2=36\)

\(\Leftrightarrow x^2+\frac{1}{x^2}=34\)

a) \(x^3-4x^3+8x-8\)

\(=x^3-8+8x-4x^2\)

\(=\left(x-2\right)\left(x^2-2x+4\right)+4x\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-2x+4+4x\right)=\left(x-2\right)\left(x^2+2x+4\right)\)

13 tháng 7 2015

1a/ x3+x2+x+1=0

x2(x+1).(x+1)=0

=>           x2(x+1)=0                     x =1

hoặc                               =>[

              x+1=0                        x=-1

 

b/(x+2)2=x+2

x2+2.x.2+2=x+2

x+x+4x+4=x+2

6x+4=x+2

....

c/(x+1)(6x2+2x)+(x-1)(6x2+2x)=0

x2-12 + (6x2+2x)2=0

=>               x2-1 = 0                   x=1

hoặc                               => [

              (6x2+2x)2=0                 x= 0

 

 

 

 

a) Ta có: \(x^4-16x^2=0\)

\(\Leftrightarrow x^2\left(x^2-16\right)=0\)

\(\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4;-4\right\}\)

b) Ta có: \(9x^2+6x+1=0\)

\(\Leftrightarrow\left(3x\right)^2+2\cdot3x\cdot1+1^2=0\)

\(\Leftrightarrow\left(3x+1\right)^2=0\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=-1\)

hay \(x=-\frac{1}{3}\)

Vậy: \(x=-\frac{1}{3}\)

c) Ta có: \(x^2-6x=16\)

\(\Leftrightarrow x^2-6x-16=0\)

\(\Leftrightarrow x^2-8x+2x-16=0\)

\(\Leftrightarrow x\left(x-8\right)+2\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{8;-2\right\}\)

d) Ta có: \(9x^2+6x=80\)

\(\Leftrightarrow9x^2+6x-80=0\)

\(\Leftrightarrow9x^2+6x+1-81=0\)

\(\Leftrightarrow\left(3x+1\right)^2-9^2=0\)

\(\Leftrightarrow\left(3x+1-9\right)\left(3x+1+9\right)=0\)

\(\Leftrightarrow\left(3x-8\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-8=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=8\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=-\frac{10}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{8}{3};-\frac{10}{3}\right\}\)

e) Ta có: \(25\left(2x-1\right)^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(10x-5\right)^2-\left(3x+3\right)^2=0\)

\(\Leftrightarrow\left(10x-5-3x-3\right)\left(10x-5+3x+3\right)=0\)

\(\Leftrightarrow\left(7x-8\right)\left(13x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-8=0\\13x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=8\\13x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{7}\\x=\frac{2}{13}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{8}{7};\frac{2}{13}\right\}\)

13 tháng 9 2020

a) x4 - 16x2 = 0

<=> ( x2 )2 - ( 4x )2 = 0

<=> ( x2 - 4x )( x2 + 4x ) = 0

<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0

<=> x( x - 4 )x( x + 4 ) = 0

<=> x2( x - 4 )( x + 4 ) = 0

<=> \(\hept{\begin{cases}x^2=0\\x-4=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)( thay bằng dấu hoặc hộ mình nhé )

b) 9x2 + 6x + 1 = 0

<=> ( 3x )2 + 2.3x.1 + 12 = 0

<=> ( 3x + 1 )2 = 0

<=> 3x + 1 = 0

<=> 3x = -1

<=> x = -1/3

c) x2 - 6x = 16

<=> x2 - 6x - 16 = 0

<=> x2 + 2x - 8x - 16 = 0

<=> x( x + 2 ) - 8( x + 2 ) = 0

<=> ( x + 2 )( x - 8 ) = 0

<=> \(\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

d) 9x2 + 6x = 80

<=> 9x2 + 6x - 80 = 0

<=> 9x2 + 30x - 24x - 80 = 0

<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0

<=> ( x + 10/3 )( 9x - 24 ) = 0

<=> \(\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)

e) Áp dụng công thức an.bn = ( ab )n ta có :

25( 2x - 1 )2 - 9( x + 1 )2 = 0

<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0 

<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0

<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0

<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0

<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0

<=> ( 7x - 8 )( 13x - 2 ) = 0

<=> \(\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)

16 tháng 9 2020

             Bài làm :

a) x4 - 16x2 = 0

<=> ( x2 )2 - ( 4x )2 = 0

<=> ( x2 - 4x )( x2 + 4x ) = 0

<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0

<=> x( x - 4 )x( x + 4 ) = 0

<=> x2( x - 4 )( x + 4 ) = 0

 Vậy x=0 hoặc x=±4

b) 9x2 + 6x + 1 = 0

<=> ( 3x )2 + 2.3x.1 + 12 = 0

<=> ( 3x + 1 )2 = 0

<=> 3x + 1 = 0

<=> 3x = -1

<=> x = -1/3

c) x2 - 6x = 16

<=> x2 - 6x - 16 = 0

<=> x2 + 2x - 8x - 16 = 0

<=> x( x + 2 ) - 8( x + 2 ) = 0

<=> ( x + 2 )( x - 8 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

d) 9x2 + 6x = 80

<=> 9x2 + 6x - 80 = 0

<=> 9x2 + 30x - 24x - 80 = 0

<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0

<=> ( x + 10/3 )( 9x - 24 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)

e) 25( 2x - 1 )2 - 9( x + 1 )2 = 0

<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0 

<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0

<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0

<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0

<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0

<=> ( 7x - 8 )( 13x - 2 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)

13 tháng 9 2020

a) Ta có : x4 - 16x2 = 0

=> x4 - 8x2 - 8x2 + 64 = 64

=> x2(x2 - 8) - 8(x2 - 8) = 64

=> (x2 - 8)2 = 64

=> \(\orbr{\begin{cases}x^2-8=8\\x^2-8=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=16\\x^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm4\\x=0\end{cases}}\Rightarrow x\in\left\{4;-4;0\right\}\)

b) Ta có 9x2 + 6x + 1 = 0

=> 9x2 + 3x + 3x + 1 = 0

=> 3x(3x + 1) + (3x + 1) = 0

=> (3x + 1)2 = 0

=> 3x + 1 = 0

=> x = -1/3

c) Ta có x2 - 6x = 16

=> x2 - 6x + 9 = 25

=> (x - 3)2 = 25

=> \(\orbr{\begin{cases}x-3=5\\x-3=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=-2\end{cases}}\Rightarrow x\in\left\{8;-2\right\}\)

d) 9x2 + 6x = 80

=> 9x2 + 6x + 1 = 81

=> (3x + 1)2 = 81

=> \(\orbr{\begin{cases}3x+1=9\\3x+1=-9\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=-\frac{10}{3}\end{cases}\Rightarrow x\in}\left\{\frac{8}{3};\frac{-10}{3}\right\}\)

e) 25(2x - 1)2 - 9(x + 1)2 = 0

=> [5(2x - 1)]2 - [3(x + 1)]2 = 0

=> (10x - 5)2 - (3x + 3)2 = 0

=> (10x - 5 - 3x - 3)(10x - 5 + 3x + 3) = 0

=> (7x - 8)(13x - 2) = 0

=> \(\orbr{\begin{cases}7x=8\\13x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)

27 tháng 9 2021

ko bt lm:)

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

14 tháng 8 2016

a) (x-2)- 6(x+1)2 - x3 + 12 = 0 

<=> x3-6x2+12x-8-6(x2+2x+1)-x3+12=0

<=> x3-6x2+12x-8-6x2-12x-6-x3+12=0

<=> -12x2+4=0

<=> \(x=\frac{1}{\sqrt{3}},x=-\frac{1}{\sqrt{3}}\)

vậy pt có 2 nghiệm....

b) x3 - 6x2 + 12x - 8 = 0 

<=> (x3-2x2)-(4x2-8x)+(4x+8)=0

<=> (x-2)(x2-4x+4)=(x-2)3=0

=> x=2 là nghiệm

c) 8x3 - 12x2 + 6x - 1 = 0

<=> (2x-1)3=0

<=> x=1/2

14 tháng 8 2016

a) \(\left(x-2\right)^3-6\left(x+1\right)^2-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-6\left(x^2+2x+1\right)-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-6x^2-12x-6-x^3+12=0\)

\(\Leftrightarrow-12x^2-2=0\)

\(\Leftrightarrow-2\left(6x^2+1\right)=0\)

\(\Leftrightarrow6x^2+1=0\) (vô nghiệm)

Vậy không có giá trị nào của x thỏa mãn pt

b) \(x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy x=2

c) \(8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy \(=\frac{1}{2}\)

2 tháng 8 2016

Bài 1: (x-7)(x-8)-(x-5)(x-2)

=x^2 - 15x +56 -( x^2 -7x +10)

=46-8x.Thay x=-1/5 vào bt ta có:

A=46-8*(-1)/5=47,6

Bài 2:(x - 3)^2 - 2(x - 3)(x + 2)+ (x+2)^2

=(x - 3)[x - 3 - 2(x+2)] +(x+2)^2

=(x-3)[-x-7] + x^2+4x+4

=-x^2 -4x +21 +x^2+4x+4

=25

Bài 3:

a)2x^2 - 6x=0

<=>2x(x-3)=0

<=>2x=0 hoặc x-3=0

<=>x=0 hoặc x=3

b)x^2-6x+9=0 <-- chắc đề thế này

<=>(x-3)^2=0 dùng HĐT

<=>x-3=0 =>x=3

2 tháng 8 2016

Ôi! Mình cám ơn nhé <3
 

17 tháng 9 2018

Bài 1 : 

\(a)\)\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+3\right)\left(x-3\right)=15\)

\(\Leftrightarrow\)\(x^3-1-x\left(x^2-3^2\right)=15\)

\(\Leftrightarrow\)\(x^3-1-x^3+9x=15\)

\(\Leftrightarrow\)\(9x=16\)

\(\Leftrightarrow\)\(x=\frac{16}{9}\)

Vậy \(x=\frac{16}{9}\)

Chúc bạn học tốt ~ 

19 tháng 12 2018

a)\(5x\left(x-1\right)-\left(1-x\right)=0\)

\(\Leftrightarrow5x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(5x+1\right)\left(x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}5x+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\x=1\end{matrix}\right.\)

b) \(\left(x-3\right)^2-\left(2x+3\right)^2=0\)

\(\Leftrightarrow\left(x-3+2x+3\right)\left(x-3-2x-3\right)=0\)

\(\Leftrightarrow3x\left(-x-6\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x=0\\-x-6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

c)\(2x\left(x^2-4\right)=0\)

\(\Leftrightarrow2x\left(x+2\right)\left(x-2\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x=0\\x+2=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-2\\x=2\end{matrix}\right.\)

d)\(\left(x-2\right)^2-\left(x-2\right)\left(x+3\right)=6\)

\(\Leftrightarrow x^2-4x+4-x^2-3x+2x+6-6=0\)

\(\Leftrightarrow-5x+4=0\)

\(\Leftrightarrow x=\dfrac{4}{5}\)

e)\(x^2+6x-7=0\)

\(\Leftrightarrow x^2-x+7x-7=0\)

\(\Leftrightarrow x\left(x-1\right)+7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+7\right)\left(x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+7=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\)