Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x_2\)là nghiệm của phương trình
=> \(x_2^2-5x_2+3=0\)
=> \(x_2+1=x^2_2-4x_2+4=\left(x_2-2\right)^2\)
Theo viet ta có
\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2_{ }=3\end{cases}}\)=> \(x_1^2+x_2^2=19\)
Khi đó
\(A=||x_1-2|-|x_2-2||\)
=> \(A^2=\left(x^2_1+x_2^2\right)-4\left(x_1+x_2\right)+8-2|\left(x_1-2\right)\left(x_2-2\right)|\)
=> \(A^2=19-4.5+8-2|3-2.5+4|=1\)
Mà A>0(đề bài)
=> A=1
Vậy A=1
theo vi-ec ta có: \(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=2\\P=x_1.x_2=\dfrac{c}{a}=-15\end{matrix}\right.\)
\(Q=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1.x_2}=\sqrt{2^2-4.\left(-15\right)}=8\)
Điều kiện: -1 < x < 1.
Với điều kiện trên, phương trình đã cho tương đương: x = 5- 2m
Để phương trình đã cho có nghiệm thì: -1 < 5- 2m < 1
⇔ - 6 < - 2 m < - 4 ⇔ 3 > m > 2 .
Coi như các điều kiện có nghiệm đều thỏa mãn
Theo định lý Viet \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{matrix}\right.\)
Giả sử pt bậc 2 nhận \(\frac{1}{x_1};\frac{1}{x_2}\) là nghiệm có dạng \(x^2-Ax+B=0\)
\(\left\{{}\begin{matrix}\frac{1}{x_1}+\frac{1}{x_2}=A\\\frac{1}{x_1x_2}=B\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=\frac{x_1+x_2}{x_1x_2}=\frac{-\frac{b}{a}}{\frac{c}{a}}=-\frac{b}{c}\\B=\frac{1}{x_1x_2}=\frac{a}{c}\end{matrix}\right.\)
Vậy pt đó có dạng: \(x^2+\frac{b}{c}x+\frac{a}{c}=0\Leftrightarrow cx^2+bx+a=0\)
Hình như là bài mở đầu lớp 10
* Khẳng định: x = - 5 là một nghiệm của phương trình đã cho là 1 khẳng định đúng
* Khẳng định: x = - 4 là nghiệm của phương trình đã cho là 1 khẳng định sai .
Khẳng định : x = - 5 là một nghiệm của phương trình đã cho là một khẳng định đúng
Khẳng định : x = - 4 là nghiệm của phương trình đã cho là một khẳng định sai