Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{3}{4}=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{cases}}\)
- \(cosx=\frac{1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
- \(cosx=\frac{-1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}=-\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\sqrt{3}}=\frac{-\sqrt{3}}{3}\)
b) Bạn làm tương tự câu a) nha.
Bài 2:
\(1+\tan ^2a=1+\frac{\sin ^2a}{\cos ^2a}=\frac{\cos ^2a+\sin ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)
\(1+\cot ^2a=1+\frac{\cos ^2a}{\sin ^2a}=\frac{\sin ^2a+\cos ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)
Ta có đpcm.
1.
$0< a< 90^0\Rightarrow `1>\sin a, \cos a>0$
Do đó:
$\sin a-\tan a=\sin a-\frac{\sin a}{\cos a}=\frac{\sin a(\cos a-1)}{\cos a}<0$
$\Rightarrow \sin a< \tan a$
(đpcm)
$\cos a-\cot a=\cos a-\frac{\cos a}{\sin a}=\frac{\cos a(\sin a-1)}{\sin a}<0$
$\Rightarrow \cos a< \cot a$ (đpcm)
\(A=4\left(1-sin^2x\right)-6sin^2a=4-10sin^2a=4-10.\left(\frac{1}{5}\right)^2=...\)
\(tana+cota=3\Leftrightarrow\frac{sina}{cosa}+\frac{cosa}{sina}=3\Leftrightarrow\frac{sin^2a+cos^2a}{sina.cosa}=3\)
\(\Leftrightarrow\frac{1}{sina.cosa}=3\Leftrightarrow sina.cosa=\frac{1}{3}\)
\(C=cot^2a-cos^2a.cot^2a=cot^2a\left(1-cos^2a\right)=cot^2a.sin^2a\)
\(=\frac{cos^2a}{sin^2a}.sin^2a=cos^2a=1-sin^2a=1-\left(\frac{3}{4}\right)^2=...\)
\(\sin a=\frac{\sqrt{3}}{2}\)\(\Rightarrow a=60^o\)
\(\Rightarrow\cos a=\frac{1}{2}\); \(\tan a=\sqrt{3}\); \(\cot a=\frac{1}{\sqrt{3}}\)