Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhận liên hợp ta có \(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)
mà theo đề bài ta có \(\left(\sqrt{x^2+1}+x\right)\left(y+\sqrt{y^2+1}\right)=1\)
==> \(\sqrt{x^2+1}-x=y+\sqrt{y^2+1}\)
tương tự ta có \(\sqrt{x^2+1}+x=\sqrt{y^2+1}-y\)
trừ từng vế 2 pt trên ta có 2x=-2y <=>x=-y
đến đây ok rùi nhé bạn
\(x-2\sqrt{x}+1+y-1-2\sqrt{y-1}+1+z-2-2\sqrt{z-2}+1=0\)
\(\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
x =1
y= 2
z =3
S= 12+22+32= 14
Mình có thể giúp bạn bài 2 như sau, thủ thuật vô cùng đơn giản :
Ta có : 20162-20152 = (2016-2015).(2015+2016) = 2015+2016. Tương tự với các số khác, ta có :
A = 2016+2015+2014+2013+...+2+1 = 2016.2017:2=2033136
ok ?
Đặt \(\sqrt{x}=x;\sqrt{y}=y;\sqrt{z}=z\) cho dễ nhìn.
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\x^2+y^2+z^2=2\end{cases}}\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=4\)
\(\Leftrightarrow xy+yz+zx=1\)
Ta có:
\(x\left(1+y^2\right)\left(1+z^2\right)+y\left(1+z^2\right)\left(1+x^2\right)+z\left(1+x^2\right)\left(1+y^2\right)\)
\(=x^2y^2z+y^2z^2x+z^2x^2y+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+x+y+z\)
\(=xyz\left(xy+yz+zx\right)+x^2\left(2-x\right)+y^2\left(2-y\right)+z^2\left(2-z\right)+2\)
\(=-2xyz+2\left(x^2+y^2+z^2\right)-\left(x^3+y^3+z^3-3xyz\right)+2\)
\(=-2xyz+6-\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=-2xyz+6-2=-2xyz+4\)
Ta lại có:
\(\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)=x^2y^2z^2+x^2y^2+y^2z^2+z^2x^2+x^2+y^2+z^2+1\)
\(=x^2y^2z^2+\left(xy+yz+zx\right)^2-2xyz\left(xy+yz+zx\right)+3\)
\(=x^2y^2z^2-2xyz+4=\left(xyz-2\right)^2\)
\(\Rightarrow A=\sqrt{\left(xyz-2\right)^2}.\frac{4-2xyz}{\left(xyz-2\right)^2}\)
Tới đây bí :((
x;y;z là nghiệm của PT: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\left(1\right)\)=> đk: x >=0; y >= 1 ; z >= 2.
Ta có:
Vậy để (1) thỏa mãn thì dấu "=" xảy ra hay các BĐT (a); (b); (c) xảy ra. Khi đó, x = 1; y = 2; z = 3.