Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và 2x + 3y + z = 17
Giải
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\) và 2x + 3y + z = 17
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x+3y+z}{4+9+4}=\dfrac{17}{17}=1\)
\(\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{4}=1\Rightarrow z=4\)
Vậy...
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và (x - y)2 + (y - z)2 = 2
Giải
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{\left(x-y\right)^2+\left(y-z\right)^2}{\left(2-3\right)^2+\left(3-4\right)^2}=\dfrac{2}{2}=1\)
\(\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{4}=1\Rightarrow z=4\)
Vậy...
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
\(\Rightarrow x;1-2y\in U\left(40\right)\)
\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Mà 1-2y lẻ nên:
\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)
b tương tự.
c) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)
d tương tự
a)
ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)
Vậy TXĐ của $x$ là \(D= [0;+\infty)\)
b)
ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)
c)
ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)
d)
ĐK:
\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)
Vậy TXĐ \(D=\mathbb{R}\)
e)
ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)
f)
ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
Bài 1:
a) Ta có:
\(\frac{x}{3}=\frac{y}{7}\) và \(x.y=84.\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)
Lại có: \(x.y=84\)
\(\Rightarrow3k.7k=84\)
\(\Rightarrow21.k^2=84\)
\(\Rightarrow k^2=84:21\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2.\)
+ TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)
+ TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)
Bài 2:
a) Ta có:
Tham khảo nha:
Biến đổi biểu thức tương đương : (x^2 - 1) /2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : {1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Chúc bạn học có hiệu quả!
a. Áp dụng t/c dãy tỉ sô bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{3y}{12}=\dfrac{x-3y}{3-12}=\dfrac{36}{-9}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-4\Rightarrow x=-12\\\dfrac{y}{4}=-4\Rightarrow y=-16\end{matrix}\right.\)
Vậy.............
b. Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x+3y}{4+9}=\dfrac{39}{13}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=3\Rightarrow x=6\\\dfrac{y}{3}=3\Rightarrow y=9\end{matrix}\right.\)
Vậy.........
c. Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{4x}{12}=\dfrac{3y}{15}=\dfrac{4x-3y}{12-15}=\dfrac{12}{-3}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-4\Rightarrow x=-12\\\dfrac{y}{5}=-4\Rightarrow y=-20\end{matrix}\right.\)
Vậy............
a, \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{3}=\dfrac{3y}{12}\)
Áp dụng t/c dãy tỉ số = nhau ,ta có :
\(\dfrac{x}{3}=\dfrac{3y}{12}=\dfrac{x-3y}{3-12}=\dfrac{36}{-9}=-4\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=-4\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\)
Vậy ...
b,c tương tự
a.
\(\frac{2x}{7}=\frac{3y}{2}\Rightarrow4x=21y\)
\(x-y=17\Rightarrow x=17+y\)
\(\Rightarrow4\left(17+y\right)=21y\Rightarrow68+4y=21y\Rightarrow17y=68\Rightarrow y=4\)
\(\Rightarrow x=17+y=17+4=21\)
a,\(\dfrac{x}{2}=\dfrac{y}{3}\) <=> \(\dfrac{5x}{10}=\dfrac{3y}{9}\)
Áp dụng T/c dãy tỉ số BN, ta có:
\(\dfrac{5x+3y}{10+9}=\dfrac{38}{19}=2\). Từ đó suy ra: x=2.10:5=4
y=2.9:3=6
b, \(\dfrac{x}{3}=\dfrac{y}{5}\) <=> \(\dfrac{x^2}{9}=\dfrac{y^2}{25}\)
Áp dụng ......, ta có:
\(\dfrac{x^2+y^2}{9+25}=\dfrac{68}{34}=2\). Từ đó suy ra: x2=2.9=18=>x=..... (xem lại đề)
y2=2.25=50=>y=.... (xem lại đề)
c, \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x.y}{2.5}=\dfrac{10}{10}=1\)
=> x=1.2=2
y=1.5=5
\(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)
\(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
\(\Rightarrow\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.20=40\\z=2.32=64\end{matrix}\right.\)
Vậy...
Ta có : \(\dfrac{x}{y}\) = \(\dfrac{7}{20}\) \(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) ( 1)
Ta có : \(\dfrac{y}{z}=\dfrac{5}{8}\) \(\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\)
\(\Rightarrow\dfrac{y}{5}.\dfrac{1}{4}=\dfrac{z}{8}.\dfrac{1}{4}\)
\(\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)
Từ (1) và (2)
\(\Rightarrow\) \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
Đặt \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=k\)
\(\Rightarrow x=7k\) ; \(y=20k\) ; \(z=32k\)
Thay \(x=7k\) ; \(y=20k\) ; \(z=32k\) vào \(2x+5y-2z=100\)
\(\Rightarrow2.\left(7k\right)+5.\left(20k\right)-2.\left(32k\right)\) \(=100\)
\(\Rightarrow\)\(14k+100k-64k=100\)
\(\Rightarrow k.\left(14+100-64\right)=100\)
\(\Rightarrow k.50=100\)
\(\Rightarrow k=100:50\) \(\Rightarrow k=2\)
\(\Rightarrow x=7k=7.2=14\)
\(\Rightarrow y=20k=20.2=40\)
\(\Rightarrow z=32k=32.2=64\)
Vậy \(x=14\) ; \(y=40\) ;\(z=64\)
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{5x}{10}=\dfrac{3y}{9}=\dfrac{5x+3y}{10+9}=\dfrac{38}{19}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.2=4\\y=2.3=6\end{matrix}\right.\)
b) \(\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{5^2}=\dfrac{x^2+y^2}{9+25}=\dfrac{68}{34}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.5=10\end{matrix}\right.\)
c) Nếu phải dùng tính chất của dãy tỉ số bằng nhau thì mình không chắc mình làm đúng, thôi thì:
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
Vì \(x.y=10\) nên \(2k.5k=10\Rightarrow10k^2=10\Rightarrow k^2=1\Rightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1.2=2\\x=\left(-1\right).2=2\end{matrix}\right.\\\left[{}\begin{matrix}y=1.5=5\\y=\left(-1\right).5=-5\end{matrix}\right.\end{matrix}\right.\)
\(\dfrac{x-y}{x+2y}=\dfrac{3}{4}\Leftrightarrow4\left(x-y\right)=3\left(x+2y\right)\\ \Leftrightarrow4x-4y=3x+6y\\ \Leftrightarrow x=10y\Leftrightarrow\dfrac{x}{y}=10\)
\(\dfrac{x-y}{x+2y}=\dfrac{3}{4}\)
\(\Rightarrow4\left(x-y\right)=3\left(x+2y\right)\)
\(\Rightarrow4x-4y=3x+6y\)
\(\Rightarrow x=10y\)
\(\dfrac{x}{y}=\dfrac{10y}{y}=10\)