K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

<=> \(\dfrac{yz}{xyz}+\dfrac{xz}{xyz}+\dfrac{xy}{xyz}=0\)

<=> yz + xz + xy = 0

=> (yz)3 + (xz)3 + (xy)3 = 3x2y2z2

\(A=\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)

= \(\dfrac{y^3z^3}{x^2y^2z^2}+\dfrac{x^3z^3}{x^2y^2z^2}+\dfrac{x^3y^3}{x^2y^2z^2}\)

= \(\dfrac{3x^2y^2z^2}{x^2y^2z^2}\)

= 3

2 tháng 3 2017

duy khang nguyễn https://hoc24.vn/hoi-dap/question/133551.html

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow \frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

Suy ra \(yz=-xy-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xy-xz=x(x-y)-z(x-y)\)

\(\Leftrightarrow x^2+2yz=(x-z)(x-y)\)

\(\Rightarrow \frac{yz}{x^2+2yz}=\frac{yz}{(x-z)(x-y)}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(A=\frac{yz}{(x-y)(x-z)}+\frac{xz}{(y-x)(y-z)}+\frac{xy}{(z-x)(z-y)}\)

\(A=\frac{-yz(y-z)}{(x-y)(y-z)(z-x)}+\frac{-xz(z-x)}{(x-y)(y-z)(z-x)}+\frac{-xy(x-y)}{x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{(x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}=1\)

22 tháng 1 2019

Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left\{{}\begin{matrix}xy=-yz-xz\\yz=-xy-xz\\xz=-xy-xz\end{matrix}\right.\)

\(\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự:

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\\\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}+\dfrac{yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{0}{\left(x-y\right)\left(x-z\right)}=0\)

Vậy \(A=0.\)

NV
2 tháng 3 2019

Do \(xyz\ne0\) ta có:

\(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=0\Leftrightarrow xyz\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)=0\Leftrightarrow x+y+z=0\)

Lại có: \(x^3+y^3+z^3=x^3+y^3+3x^2y+3y^2x-3xy\left(x+y\right)+z^3\)

\(=\left(x+y\right)^3+z^3-3xy\left(-z\right)=\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)+3xyz=3xyz\)

Vậy nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)

\(P=\dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}=\dfrac{x^3}{xyz}+\dfrac{y^3}{xyz}+\dfrac{z^3}{xyz}=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)

9 tháng 4 2018

a)

\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}=\dfrac{x^2+3x-2x-6}{x^3+3x^2-7x^2-21x+3x+9}\)

\(=\dfrac{x\left(x+3\right)-2\left(x+3\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)

\(=\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x^2-7x+3\right)\left(x+3\right)}=\dfrac{x-2}{x^2-7x+3}\)

6 tháng 4 2017

ta có : \(xy+yz+xz=0\Rightarrow\dfrac{xy+yz+xz}{xyz}=0\)

\(\Leftrightarrow\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{y}=0\Rightarrow\dfrac{1}{z}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3\)

\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x^3}+3.\dfrac{1}{x^2}.\dfrac{1}{y}+3.\dfrac{1}{x}.\dfrac{1}{y^2}+\dfrac{1}{y^3}\right)\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=-3.\dfrac{1}{x}.\dfrac{1}{y}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=3.\dfrac{1}{xyz}\)

Do đó : \(xyz.\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)

\(\Leftrightarrow\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=3\)

\(\Leftrightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

Vậy giá trị của biểu thức \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)

26 tháng 11 2017

Từ \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow\left\{{}\begin{matrix}1+\dfrac{x}{y}+\dfrac{x}{z}=0\left(1\right)\\1+\dfrac{y}{x}+\dfrac{y}{z}=0\left(2\right)\\1+\dfrac{z}{x}+\dfrac{z}{y}=0\left(3\right)\end{matrix}\right.\)

\(\dfrac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left(xy+yz+xz\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=0\)

\(\Rightarrow\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{x}{z}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{y}{z}=0\)

\(\Rightarrow A+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{x}{z}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{y}{z}=0\)

Cộng theo vế của \(\left(1\right);\left(2\right);\left(3\right)\)suy ra:

\(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}=-3\)

\(\Rightarrow A-3=0\Rightarrow A=3\)

14 tháng 5 2018

b)\(N=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}\)

\(N=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\)

\(N=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

Ta cm đẳng thức sau:\(x^3+y^3+z^3=3xyz\Leftrightarrow x+y+z=0\)

ĐT\(\Leftrightarrow x^3+y^3-3xyz=-z^3\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-3xy=-z^3\)

\(\Leftrightarrow-zx^2+xyz-zy^2-3xyz=-z^3\)

\(\Leftrightarrow x^2+2xy+y^2=z^2\)

\(\Leftrightarrow\left(x+y\right)^2=z^2\)

\(\Leftrightarrow\left(-z\right)^2=z^2\)(luôn đúng)

Áp dụng\(\Rightarrow N=xyz.\dfrac{3}{xyz}=3\)

14 tháng 5 2018

a, (M-1)/70-71=m

m=(71^9+71^8....71+1)

71m=71^10+...71^2+71

70m=71^10-1

(M-1)/70=71^10+70

M-1=70(71^10+70)

M=70(71^10+70)-1