Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a chia hết cho b ; b khác 1 . gọi thương là c thì c < a .
a - 1 < a nên các số từ a : b đến a đều nhỏ hơn a nên các số đó đều không chia hết cho a
Vậy,...
b) Nếu a; b đều là số nguyên tố khác 2 => a; b lẻ => a + b chẵn => c chẵn ; không là số nguyên tố (trái với đề bài)
Vậy...
c) Đề sai: Vì dụ 2 + 2 = 4
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #
(ab)2=(b-1)aab
=>2ab=aabb-aab
=>aabb=2ab-aab
=>aabb=ab(2-b)
=>ab(ab)=ab(2-b)
=>2-b=ab
=>ab+b=2
=>a(b+1)=2
=>a;b+1\(\in\)Ư(2)={1;-1;2;-2}
Ta có bảng sau
a | 1 | 2 | -2 | -1 |
b+1 | 2 | 1 | -1 | -2 |
a | 1 | 2 | -2 | -1 |
b | 1 | 0 | -2 | -3 |
Vì a;b thuộc N=>(a;b) thuộc (1;1);(2;0)
1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow M>N\)
b.ta thấy:
\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
=> A>B
Bài làm:
a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)
b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)
c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)
Học tốt!!!!
1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn
ta có: \(a.\left(b+n\right)=ab+an;b.\left(a+n\right)=ba+bn\)
nếu a < b
=> ab + an < ba + bn
=> a.(b+n) < b.(a+n)
\(\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
nếu a = b
...
---> a/b = a+n/b+n
nếu a > b
...
----> a/b > a+n/b+n
Theo mk thì \(a,b,n\in N\)
Xét hiệu:
\(\frac{a}{b}-\frac{a+n}{b+n}=\frac{a.\left(b+n\right)-\left(a+n\right).b}{b.\left(b+n\right)}=\frac{an-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b.\left(b+n\right)}\)
Với \(a=b\Rightarrow a-b=0\Rightarrow\frac{n.\left(a-b\right)}{b.\left(b+n\right)}=0\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}\)
Với \(a>b\Rightarrow a-b>0\Rightarrow\frac{n.\left(a-b\right)}{b.\left(b+n\right)}>0\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\)
Với \(a< b\Rightarrow a-b< 0\Rightarrow\frac{n.\left(a-b\right)}{b.\left(b+n\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
Vậy \(\frac{a}{b}=\frac{a+n}{b+n}\Leftrightarrow a=b\)
\(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)
\(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)
Tham khảo nhé~
Để a+b nhỏ nhất thì a,b nhỏ nhất
Do \(a-b\ne0\) nên \(a\ne b\), \(ab\ne\frac{a}{b}\) nên \(b\ne1\)\(\Rightarrow\)\(a\ne1\), \(a-b>0\)\(\Rightarrow\)\(a>b\)
\(\frac{a}{b}\inℕ^∗\)\(\Rightarrow\)\(a⋮b\)
Từ những điều kiện trên => a nhỏ nhất khi a=2b
loại a=4 và b=2 vì ko thoả mãn \(a-b\ne\frac{a}{b}\)
=> a,b nhỏ nhất khi a=6 và b=3 => a+b=9 thoả mãn đk