Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x chia 7 dư 6.Ta đặt x=7k+6
Khi đó,\(x^2=\left(7k+6\right)^2=49k^2+84k+36=7\left(7k^2+12k+5\right)+1\)
Vậy x2 chia 7 dư 6(đccm)
Ta có : x chia cho 2 dư 1
x chia cho 3 dư 2
x chia cho 4 dư 3
x chia cho 5 dư 4 \(\Rightarrow\)x+1 chia hết cho 2;3;4;5;6;7;8;9\(\Rightarrow\)x +1 = BCNN(2;3;4;5;6;7;8;9) = 2520 \(\Rightarrow\)x=2519(nếu x nhỏ nhất)
x chia cho 6 dư 5
x chia cho 7 dư 6
x chia cho 8 dư 7
x chia cho 9 dư 8
Còn nếu x không nhỏ nhất thì nhân lần lượt với các số tự nhiên từ 0;1;2;3...
Gọi x là số cần tìm
x chia 2 dư 1 chia 3 dư 2 chia 4 dư 3 ... chia 9 dư 8
\(\Rightarrow x+1⋮2;3;4;5;6;7;8;9\)
x có dạng \(x+kBCNN\left(2;3;4;5;6;7;8;9\right);k\in N\)
\(2=2\)
\(3=3\)
\(4=2^2\)
\(5=5\)
\(6=2\cdot3\)
\(7=7\)
\(8=2^3\)
\(9=3^2\)
\(BCNN\left(2;3;4;5;6;7;8;9\right)=2^3\cdot3^2\cdot5\cdot7=2520\)
\(x+1=2520\)
\(x=2519\)
Vậy \(x=\left\{2519;2519+1\cdot2520;2519+2\cdot2520;...\right\}\)
\(x=\left\{2519;5039;7559;...\right\}\)
Ta có x chia 7 dư 6.Đặt x=7k+6
Khi đó:\(x^2=\left(7k+6\right)^2=49k^2+84k+36=7\left(7k^2+12k+5\right)+1\)
Vậy x2 chia 7 dư 1(đccm)
Ta có x chia 9 dư 5,ta đặt x=9k+5
Khi đó,\(x^2=\left(9k+5\right)^2=81k^2+90k+25=9\left(9k^2+10k+2\right)+7\)
Vậy x2 chia 9 dư 7(đccm)
Lời giải:
Vì $x$ chia $7$ dư $6$ nên có thể viết $x$ dưới dạng $x=7k+6$ với $k$ là số tự nhiên.
Khi đó:
$x^2=(7k+6)^2=49k^2+36+84k=7(7k^2+12k+5)+1$
$\Rightarrow x^2$ chia $7$ dư $1$ (đpcm)