Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
đặt: \(\left[{}\begin{matrix}n=5k+1\\m=5k+2\end{matrix}\right.\)
khi đó:
\(n^2+m^2=\left(5k+1\right)^2+\left(5k+2\right)^2\\ =25k^2+10k+1+25k^2+20k+4\\ =50k^2+30k+5=5\left(10k^2+6k+1\right)⋮5\)
vậy \(n^2+m^2⋮5\)
a chia 5 dư 4 \(\Rightarrow\) a = 5k + 4
a2 = (5k + 4)2 = 25k2 + 40k + 16 = 5.(5k2 + 8k + 3) + 1 chia 5 dư 1
Đặt thương của a chia 5 là x
=> Số a là: 5x + 4
=> \(a^2\)=\(\left(5x+4\right)^2\)=\(25x^2+40x+16\)
Vì \(25x^2\)chia hết cho 5 ( 25 chia hết cho 5 )
\(40x\)chia hết cho 5 ( 40 chia hết cho 5 ) => \(25x^2+40x\)chia hết cho 5
\(16\)chia 5 dư 1
=> \(25x^2+40x+16\)chia 5 dư 1
Vậy \(a^2\)chia 5 dư 1
a chia 5 dư 4 => a = 5k + 4 [k ∈ N]
=> a2 = [5k + 4]2 = 25k2 + 40k + 16 = 25k2 + 40k + 15 + 1 =- 5[5k2 + 8k + 3] + 1 chia 5 dư 1 => ĐPCM