Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$
Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:
$x=0$
$x=\frac{1}{2}\pi$
$x=\pi$
Nếu phương trình là \(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2-3=0\) thì còn có cơ hội giải quyết
Chứ đề đúng thế này thì e rằng không có cơ hội nào cả.
Đặt \(f\left(x\right)=5x^3+\left(2m-1\right)x^2+m+6\)
Hàm số liên tục trên R
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(5x^3+\left(2m-1\right)x^2+m+6\right)\)
\(=\lim\limits_{x\rightarrow-\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=-\infty< 0\)
\(\Rightarrow\) Luôn tồn tại 1 số thực \(a< 0\) sao cho \(f\left(a\right)< 0\)
\(\lim\limits_{x\rightarrow+\infty}\left(x^3+\left(2m-1\right)x^2+m+6\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=+\infty.5=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 số thực \(b>0\) sao cho \(f\left(b\right)>0\)
\(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (a;b) với mọi m
\(-3\le x\le1\)
Pt tuơng đương:
\(\left(2m-4\right)\sqrt{\dfrac{x+3}{4}}+\left(4m-2\right)\sqrt{\dfrac{1-x}{4}}+m-1=0\) (1)
Do \(\left(\sqrt{\dfrac{x+3}{4}}\right)^2+\left(\sqrt{\dfrac{1-x}{4}}\right)^2=1\)
\(\Rightarrow\) Đặt \(\left\{{}\begin{matrix}\sqrt{\dfrac{x+3}{4}}=sint\\\sqrt{\dfrac{1-x}{4}}=cost\end{matrix}\right.\) với \(0\le t\le\dfrac{\pi}{2}\)
Pt (1) trở thành: \(\left(2m-4\right)sint+\left(4m-2\right)cost+m-1=0\)
\(\Leftrightarrow2msint+4mcost+m=4sint+2cost+1\)
\(\Leftrightarrow m\left(2sint+4cost+1\right)=4sint+2cost+1\)
\(\Leftrightarrow m=\dfrac{4sint+2cost+1}{2sint+4cost+1}\)
Xét hàm \(f\left(t\right)=\dfrac{4sint+2cost+1}{2sint+4cost+1}\)
\(\Rightarrow f'\left(t\right)=\dfrac{2\left(cost+sint\right)+12}{\left(2sint+4cost+1\right)^2}>0\) \(\forall t\in\left[0;\dfrac{\pi}{2}\right]\)
\(\Rightarrow f\left(t\right)\) đồng biến trên \(\left[0;\dfrac{\pi}{2}\right]\)
\(\Rightarrow f\left(0\right)\le f\left(t\right)\le f\left(\dfrac{\pi}{2}\right)\Leftrightarrow\dfrac{3}{5}\le f\left(t\right)\le\dfrac{5}{3}\)
Vậy để pt có nghiệm thì \(\dfrac{3}{5}\le m\le\dfrac{5}{3}\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{5}\\b=\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow S=1981\)
bạn giỏi quá.
Thanks rất nhiều.
Cộng đồng hoc24 là một môi trường giáo dục thật tuyệt!