Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2sin\left(\frac{\pi}{2}+x\right)+sin\left(3\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)
\(=2cosx+sinx-cosx-sinx\)
\(=cosx\)
\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)
\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)
\(A=0\)
\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)
\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)
\(B=\frac{1}{4}\)
\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)
\(C=\frac{3}{2}\)
\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)
\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)
\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)
\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)
Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là
\(=sin\left(x+\frac{\pi}{2}+42\pi\right)+cos\left(206\pi+\pi+x\right)+sin^2\left(32\pi+\pi+x\right)+sin^2\left(x+\frac{\pi}{2}-2\pi\right)\)
\(=sin\left(x+\frac{\pi}{2}\right)+cos\left(\pi+x\right)+sin^2\left(\pi+x\right)+sin^2\left(x+\frac{\pi}{2}\right)\)
\(=cosx-cosx+sin^2x+cos^2x\)
\(=sin^2x+cos^2x=1\)
\(A=2cosx-3cosx-sin\left(3\pi+\frac{\pi}{2}-x\right)+tan\left(\pi+\frac{\pi}{2}-x\right)\)
\(A=-cosx+sin\left(\frac{\pi}{2}-x\right)+tan\left(\frac{\pi}{2}-x\right)\)
\(A=-cosx+cosx+cotx=cotx\)
\(B=2cosx+sin\left(4\pi+\pi-x\right)+sin\left(2\pi-\frac{\pi}{2}+x\right)-sinx\)
\(B=2cosx+sin\left(\pi-x\right)+sin\left(-\frac{\pi}{2}+x\right)-sinx\)
\(B=2cosx+sinx-sin\left(\frac{\pi}{2}-x\right)-sinx\)
\(B=2cosx-cosx=cosx\)
a/ \(\pi< x< \frac{3\pi}{2}\Rightarrow sinx< 0\)
\(\Rightarrow sinx=-\sqrt{1-cos^2x}=-\frac{5}{13}\)
\(sin\left(\frac{\pi}{3}-x\right)=sin\frac{\pi}{3}cosx-cos\frac{\pi}{3}sinx=\frac{\sqrt{3}}{2}.\left(-\frac{12}{13}\right)-\frac{1}{2}.\left(-\frac{5}{13}\right)=\frac{5-12\sqrt{3}}{26}\)
b/ \(\pi< x< \frac{3\pi}{2}\Rightarrow cosx< 0\)
\(\Rightarrow cosx=-\sqrt{1-sin^2x}=-\frac{3}{5}\)
\(cot\left(x-\frac{\pi}{4}\right)=\frac{cos\left(x-\frac{\pi}{4}\right)}{sin\left(x-\frac{\pi}{4}\right)}=\frac{sinx+cosx}{sinx-cosx}=7\)
c/ \(cot\left(\frac{5\pi}{2}-x\right)=cot\left(2\pi+\frac{\pi}{2}-x\right)=tanx=2\)
\(\Rightarrow tan\left(x+\frac{\pi}{4}\right)=\frac{tanx+tan\frac{\pi}{4}}{1-tanx.tan\frac{\pi}{4}}=\frac{2+1}{1-2.1}=-3\)
\(A=cos\left(6\pi+\pi-x\right)+sin\left(2\pi+\frac{\pi}{2}-x\right)+tan^2\left(\pi+\frac{\pi}{2}-x\right)-\frac{1}{sin^2\left(7\pi+\pi+x\right)}\)
\(=cos\left(\pi-x\right)+sin\left(\frac{\pi}{2}-x\right)+tan^2\left(\frac{\pi}{2}-x\right)-\frac{1}{sin^2\left(\pi+x\right)}\)
\(=-cosx+cosx+cot^2x-\frac{1}{sin^2x}\)
\(=cot^2x-\left(1+cot^2x\right)=-1\)
\(\frac{sin^2x+cos^2x+2sinx.cosx}{sinx+cosx}-\left(1-tan^2\frac{x}{2}\right).cos^2\frac{x}{2}\)
\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\)
\(=sinx+cosx-cosx=sinx\)
\(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\left(\frac{1}{2}-\frac{1}{2}sin2x\right)^2\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)
\(=\frac{1}{4}-\frac{1}{2}\left(cos2x+sin2x\right)+\frac{1}{4}\left(cos^22x+sin^22x\right)\)
\(=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)
\(P=sin^4x+\left(sin^2\left(x+\frac{\pi}{4}\right)\right)^2+cos^4x+\left(cos^2\left(x+\frac{\pi}{4}\right)\right)^2\)
\(=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{4}\right)\right)^2\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}+\frac{1}{2}sin2x+\frac{1}{4}sin^22x+\frac{1}{4}+\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)
\(=1+\frac{1}{2}\left(sin^22x+cos^22x\right)=\frac{3}{2}\)
\(sin\left(x+\frac{\pi}{3}\right)-sin\left(x-\frac{\pi}{3}\right)=sin\left(6\pi+\frac{\pi}{2}\right)\)
\(\Leftrightarrow2cosx.sin\frac{\pi}{3}=sin\left(\frac{\pi}{2}\right)\)
\(\Leftrightarrow2cosx.\frac{\sqrt{3}}{2}=1\)
\(\Rightarrow cosx=\frac{1}{\sqrt{3}}\)