Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Giải :
A = \(\dfrac{2\times\dfrac{\sin x}{\sin x}+3\times\dfrac{\cos x}{\sin x}}{5\times\dfrac{\cos x}{\sin x}+6\times\dfrac{\sin x}{\sin x}}=\dfrac{2+3\cot x}{5\cot x-6}=\dfrac{2+3\times2}{5\times2-6}=2\)
1) \(\sin^2x+\cos^2x=1\Rightarrow\cos x=1-\sin^2x=1-\left(\dfrac{2}{3}\right)^2=\dfrac{5}{9}\)
P = ( 1-3cos2a)(2+3cos2a)
= 2 + 3cos2a - 6cos2a - 9\(cos^22a\)
Thay cos = 5/9 vào pt rồi giải bpt là được
\(1-cos^2x+1-cos^2y=\frac{1}{4}\Rightarrow cos^2x+cos^2y=\frac{7}{4}\)
\(\Rightarrow\frac{3}{4}\le cos^2x;cos^2y\le1\)
\(S=1+tan^2x+1+tan^2y-2=\frac{1}{cos^2x}+\frac{1}{cos^2y}-2\)
\(=\frac{7}{4cos^2x.cos^2y}-2=\frac{7}{4cos^2x\left(\frac{7}{4}-cos^2x\right)}-2=\frac{7}{-4cos^4x+7cos^2x}-2\)
Đặt \(cos^2x=t\) \(\Rightarrow\frac{3}{4}\le t\le1\)
Xét \(f\left(t\right)=-4t^2+7t\) trên \(\left[\frac{3}{4};1\right]\)
\(-\frac{b}{2a}=\frac{7}{8}\Rightarrow f\left(\frac{7}{8}\right)=\frac{49}{16}\) ; \(f\left(\frac{3}{4}\right)=3\); \(f\left(1\right)=3\)
\(\Rightarrow3\le f\left(t\right)\le\frac{49}{16}\)
\(\Rightarrow\frac{7}{\frac{49}{16}}-2\le S\le\frac{7}{3}-2\Leftrightarrow\frac{2}{7}\le S\le\frac{1}{3}\)
Không có trong đáp án?
\(-3\le x\le1\)
Pt tuơng đương:
\(\left(2m-4\right)\sqrt{\dfrac{x+3}{4}}+\left(4m-2\right)\sqrt{\dfrac{1-x}{4}}+m-1=0\) (1)
Do \(\left(\sqrt{\dfrac{x+3}{4}}\right)^2+\left(\sqrt{\dfrac{1-x}{4}}\right)^2=1\)
\(\Rightarrow\) Đặt \(\left\{{}\begin{matrix}\sqrt{\dfrac{x+3}{4}}=sint\\\sqrt{\dfrac{1-x}{4}}=cost\end{matrix}\right.\) với \(0\le t\le\dfrac{\pi}{2}\)
Pt (1) trở thành: \(\left(2m-4\right)sint+\left(4m-2\right)cost+m-1=0\)
\(\Leftrightarrow2msint+4mcost+m=4sint+2cost+1\)
\(\Leftrightarrow m\left(2sint+4cost+1\right)=4sint+2cost+1\)
\(\Leftrightarrow m=\dfrac{4sint+2cost+1}{2sint+4cost+1}\)
Xét hàm \(f\left(t\right)=\dfrac{4sint+2cost+1}{2sint+4cost+1}\)
\(\Rightarrow f'\left(t\right)=\dfrac{2\left(cost+sint\right)+12}{\left(2sint+4cost+1\right)^2}>0\) \(\forall t\in\left[0;\dfrac{\pi}{2}\right]\)
\(\Rightarrow f\left(t\right)\) đồng biến trên \(\left[0;\dfrac{\pi}{2}\right]\)
\(\Rightarrow f\left(0\right)\le f\left(t\right)\le f\left(\dfrac{\pi}{2}\right)\Leftrightarrow\dfrac{3}{5}\le f\left(t\right)\le\dfrac{5}{3}\)
Vậy để pt có nghiệm thì \(\dfrac{3}{5}\le m\le\dfrac{5}{3}\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{5}\\b=\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow S=1981\)
bạn giỏi quá.
Thanks rất nhiều.
Cộng đồng hoc24 là một môi trường giáo dục thật tuyệt!
Đề thiếu dữ kiện. Bạn xem lại đề.
dạ không thiếu dữ kiện ạ.