K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 7 2020

ĐKXĐ: \(-2\le x\le2\)

Đặt \(\sqrt{2-x}+\sqrt{2+x}=t\Rightarrow2\le t\le2\sqrt{2}\)

\(t^2=4+2\sqrt{4-x^2}\Rightarrow-\sqrt{4-x^2}=\frac{4-t^2}{2}\)

Phương trình trở thành:

\(t+\frac{4-t^2}{2}=m\Leftrightarrow f\left(t\right)=-\frac{1}{2}t^2+t+2=m\)

Xét \(f\left(t\right)\) trên \(\left[2;2\sqrt{2}\right]\)

\(-\frac{b}{2a}=1\notin\left[2;2\sqrt{2}\right]\) ; \(f\left(2\right)=2\) ; \(f\left(2\sqrt{2}\right)=2\sqrt{2}-2\)

\(\Rightarrow2\sqrt{2}-2\le m\le2\Rightarrow\left[{}\begin{matrix}a=2\sqrt{2}-2\\b=2\end{matrix}\right.\)

\(\Rightarrow T=6\)

NV
9 tháng 6 2019

Đặt \(\sqrt{1+x^2}-\sqrt{1-x^2}=a\)

\(a^2=2-2\sqrt{1-x^4}\Rightarrow\left\{{}\begin{matrix}0\le a\le\sqrt{2}\\2\sqrt{1-x^4}=2-a^2\end{matrix}\right.\)

Phương trình trở thành:

\(m\left(a+2\right)=2-a^2+a-1\)\(\Leftrightarrow m=\frac{-a^2+a-1}{a+2}\)

Xét \(f\left(a\right)=\frac{-a^2+a-1}{a+2}\Rightarrow f'\left(a\right)=\frac{\left(-2a+1\right)\left(a+2\right)+a^2-a+1}{\left(a+2\right)^2}=\frac{-a^2-4a+3}{\left(a+2\right)^2}\)

\(f'\left(a\right)=0\Rightarrow a=-2+\sqrt{7}\)

\(f\left(0\right)=-\frac{1}{2};f\left(\sqrt{2}\right)=\frac{-8+5\sqrt{2}}{2};f\left(-2+\sqrt{7}\right)=5-2\sqrt{7}\)

\(\Rightarrow\) Để pt có nghiệm thì \(-\frac{1}{2}\le m\le5-2\sqrt{7}\)

NV
9 tháng 6 2019

b/ Xét hàm \(f\left(x\right)=\sqrt{1+x^2}-\sqrt{1-x^2}\)

\(f'\left(x\right)=\frac{x}{\sqrt{1+x^2}}+\frac{x}{\sqrt{1-x^2}}=x\left(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1-x^2}}\right)\)

\(f'\left(x\right)=0\Rightarrow x=0\)

\(\Rightarrow f\left(x\right)\) đồng biến trên \(\left[0;1\right]\) và nghịch biến trên \(\left[-1;0\right]\)

\(f\left(0\right)=0;f\left(1\right)=f\left(-1\right)=\sqrt{2}\)

\(\Rightarrow a=0\) thì \(y=a\) cắt \(y=f\left(x\right)\) tại 1 điểm duy nhất (tiếp xúc)

\(0< a\le\sqrt{2}\) thì \(y=a\) cắt \(y=f\left(x\right)\) tại 2 điểm phân biệt

\(\Rightarrow\) Để phương trình đã cho có 4 nghiệm thì \(y=m\) cắt \(y=f\left(a\right)\) tại 2 điểm phân biệt

Dựa vào BBT của câu a ta được: \(\frac{-8+2\sqrt{5}}{2}\le m< 5-2\sqrt{7}\)

28 tháng 10 2020

2.

NV
9 tháng 6 2019

a/ ĐKXĐ: \(x>\frac{1}{2}\)

\(\Leftrightarrow\frac{3x^2-1}{\sqrt{2x-1}}-\sqrt{2x-1}=mx\)

\(\Leftrightarrow\frac{3x^2-2x}{\sqrt{2x-1}}=mx\Leftrightarrow\frac{3x-2}{\sqrt{2x-1}}=m\)

Đặt \(\sqrt{2x-1}=a>0\Rightarrow x=\frac{a^2+1}{2}\Rightarrow\frac{3a^2-1}{2a}=m\)

Xét hàm \(f\left(a\right)=\frac{3a^2-1}{2a}\) với \(a>0\)

\(f'\left(a\right)=\frac{12a^2-2\left(3a^2-1\right)}{4a^2}=\frac{6a^2+2}{4a^2}>0\)

\(\Rightarrow f\left(a\right)\) đồng biến

Mặt khác \(\lim\limits_{a\rightarrow0^+}\frac{3a^2-1}{2a}=-\infty\); \(\lim\limits_{a\rightarrow+\infty}\frac{3a^2-1}{2a}=+\infty\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

NV
9 tháng 6 2019

b/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt[4]{\left(x-1\right)^2}+4m\sqrt[4]{\left(x-1\right)\left(x-2\right)}+\left(m+3\right)\sqrt[4]{\left(x-2\right)^2}=0\)

Nhận thấy \(x=2\) không phải là nghiệm, chia 2 vế cho \(\sqrt[4]{\left(x-2\right)^2}\) ta được:

\(\sqrt[4]{\left(\frac{x-1}{x-2}\right)^2}+4m\sqrt[4]{\frac{x-1}{x-2}}+m+3=0\)

Đặt \(\sqrt[4]{\frac{x-1}{x-2}}=a\) pt trở thành: \(a^2+4m.a+m+3=0\) (1)

Xét \(f\left(x\right)=\frac{x-1}{x-2}\) khi \(x>0\)

\(f'\left(x\right)=\frac{-1}{\left(x-2\right)^2}< 0\Rightarrow f\left(x\right)\) nghịch biến

\(\lim\limits_{x\rightarrow2^+}\frac{x-1}{x-2}=+\infty\) ; \(\lim\limits_{x\rightarrow+\infty}\frac{x-1}{x-2}=1\) \(\Rightarrow f\left(x\right)>1\Rightarrow a>1\)

\(\left(1\right)\Leftrightarrow m\left(4a+1\right)=-a^2-3\Leftrightarrow m=\frac{-a^2-3}{4a+1}\)

Xét \(f\left(a\right)=\frac{-a^2-3}{4a+1}\) với \(a>1\)

\(f'\left(a\right)=\frac{-2a\left(4a+1\right)-4\left(-a^2-3\right)}{\left(4a+1\right)^2}=\frac{-4a^2-2a+12}{\left(4a+1\right)^2}=0\Rightarrow a=\frac{3}{2}\)

\(f\left(1\right)=-\frac{4}{5};f\left(\frac{3}{2}\right)=-\frac{3}{4};\) \(\lim\limits_{a\rightarrow+\infty}\frac{-a^2-3}{4a+1}=-\infty\)

\(\Rightarrow f\left(a\right)\le-\frac{3}{4}\Rightarrow m\le-\frac{3}{4}\)

20 tháng 12 2021

Ai giải được không ?

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 1:

Để ý rằng \((2-\sqrt{3})(2+\sqrt{3})=1\) nên nếu đặt

\(\sqrt{2+\sqrt{3}}=a\Rightarrow \sqrt{2-\sqrt{3}}=\frac{1}{a}\)

PT đã cho tương đương với:

\(ma^x+\frac{1}{a^x}=4\)

\(\Leftrightarrow ma^{2x}-4a^x+1=0\) (*)

Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì pt trên phải có dạng pt bậc 2, tức m khác 0

\(\Delta'=4-m>0\Leftrightarrow m< 4\)

Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt (*)

\(\left\{\begin{matrix} a^{x_1}+a^{x_2}=\frac{4}{m}\\ a^{x_1}.a^{x_2}=\frac{1}{m}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^{x_2}(a^{x_1-x_2}+1)=\frac{4}{m}\\ a^{x_1+x_2}=\frac{1}{m}(1)\end{matrix}\right.\)

Thay \(x_1-x_2=\log_{2+\sqrt{3}}3=\log_{a^2}3\) :

\(\Rightarrow a^{x_2}(a^{\log_{a^2}3}+1)=\frac{4}{m}\)

\(\Leftrightarrow a^{x_2}(\sqrt{3}+1)=\frac{4}{m}\Rightarrow a^{x_2}=\frac{4}{m(\sqrt{3}+1)}\) (2)

\(a^{x_1}=a^{\log_{a^2}3+x_2}=a^{x_2}.a^{\log_{a^2}3}=a^{x_2}.\sqrt{3}\)

\(\Rightarrow a^{x_1}=\frac{4\sqrt{3}}{m(\sqrt{3}+1)}\) (3)

Từ \((1),(2),(3)\Rightarrow \frac{4}{m(\sqrt{3}+1)}.\frac{4\sqrt{3}}{m(\sqrt{3}+1)}=\frac{1}{m}\)

\(\Leftrightarrow \frac{16\sqrt{3}}{m^2(\sqrt{3}+1)^2}=\frac{1}{m}\)

\(\Leftrightarrow m=\frac{16\sqrt{3}}{(\sqrt{3}+1)^2}=-24+16\sqrt{3}\) (thỏa mãn)

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 2:

Nếu \(1> x>0\)

\(2017^{x^3}>2017^0\Leftrightarrow 2017^{x^3}>1\)

\(0< x< 1\Rightarrow \frac{1}{x^5}>1\)

\(\Rightarrow 2017^{\frac{1}{x^5}}> 2017^1\Leftrightarrow 2017^{\frac{1}{x^5}}>2017\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}> 1+2017=2018\) (đpcm)

Nếu \(x>1\)

\(2017^{x^3}> 2017^{1}\Leftrightarrow 2017^{x^3}>2017 \)

\(\frac{1}{x^5}>0\Rightarrow 2017^{\frac{1}{x^5}}>2017^0\Leftrightarrow 2017^{\frac{1}{5}}>1\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}>2018\) (đpcm)

NV
4 tháng 10 2021

Giống bài trước, \(x=3+2\sqrt{2}\) là nghiệm

\(\Rightarrow y=\dfrac{mx+1}{x-m}\Rightarrow y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\) nghịch biến trên miền xác định

\(\Rightarrow\max\limits_{\left[1;2\right]}y=y\left(1\right)=\dfrac{m+1}{1-m}=-2\Rightarrow m\)

Bài 1: Tìm điều kiện của x để có biểu thức sau có ý nghĩa: a) \(\sqrt{2x}\) b) \(\sqrt{x-1}\) c) \(\sqrt{\frac{1}{x+1}}\) d) \(\sqrt{\left(x+1\right)\left(x-1\right)}\) Bài 2: rút gọn các biểu thức: a) \(2\sqrt{2}+\sqrt{18}-\sqrt{32}\) b) \(2\sqrt{5}+\sqrt{\left(1-\sqrt{5}\right)^2}\) c) \(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}-2\sqrt{3}\) Bài 3: xác định hàm số bậc nhất y=ax+b a) Biết đồ thị của hàm số song song với...
Đọc tiếp

Bài 1: Tìm điều kiện của x để có biểu thức sau có ý nghĩa:

a) \(\sqrt{2x}\) b) \(\sqrt{x-1}\) c) \(\sqrt{\frac{1}{x+1}}\) d) \(\sqrt{\left(x+1\right)\left(x-1\right)}\)

Bài 2: rút gọn các biểu thức:

a) \(2\sqrt{2}+\sqrt{18}-\sqrt{32}\)

b) \(2\sqrt{5}+\sqrt{\left(1-\sqrt{5}\right)^2}\)

c) \(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}-2\sqrt{3}\)

Bài 3: xác định hàm số bậc nhất y=ax+b

a) Biết đồ thị của hàm số song song với đường tahwngr y=2x và đi qua điểm A(1;4)

b) Vẽ đồ thị hàm số ứng với a, b vừa tìm được

Bài 4: Cho tam giác ABC vuông tại A. Biết BC=10cm, góc C=30độ. Gải tam giác vuông ABC

Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. biết AB=3, AC=4. (phải vẽ hình)

a) Tính AH, BH?

b) chứng minh CB là tiếp tuyến của đường tròn (A, AH)

c) kẻ tiếp tuyến BI và CK với đường tròn (A,AH) (I,K là điểm). Chứng minh: BC=BI+CK và ba điểm I, A, K thẳng hàng

1
9 tháng 12 2019

giúp mình với ạ, mình đang cần gấp. (Toán 9)