Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tại x = -3 ta có:
Vậy điểm có hoành độ x = -3 thì tung độ bằng 4,5.
Hoành độ các điểm có tung độ y =8 thỏa mãn phương trình: ⇔ x2 = 16 ⇔ x = 4 hoặc x = -4.
Vậy các điểm thuộc parabol có tung độ bằng 8 là (4; 8) và (-4; 8).
Bài giải:
a) Theo hình vẽ, ta lấy điểm A thuộc đồ thị có tọa độ là x = -2, y = 2. Khi đó ta được:
2 = a . (-2)2 suy ra a =
b) Đồ thị có hàm số là y = x2 . Tung độ của điểm thuộc parabol có hoành độ x = -3 là y = (-3)2 suy ra y = .
c) Các điểm thuộc parabol có tung độ là 8 là:
8 = x2 ⇔ x2 = 16 ⇔ x = ± 4
Ta được hai điểm và tọa độ của hai điểm đó là M(4; 8) và M'(-4; 8).
a, bảng giá trị tương ứng của x và y
x | -2 | -1 | 0 | 1 | 2 |
y | -4 | -1 | 0 | -1 | -4 |
-2 -4 2 -1 1 -1 P/S nhỏ:Ở đây mk ko vẽ parabol đc nên bạn nhớ vẽ bằng đường cong nhé! y x
b, Vì (d) có hệ số góc bằng 3 nên (d) có dạng y = 3x + b
Vì M(2;yM) thuộc (P) nên \(y_M=-2^2=-4\)
=> M(2 ; -4)
Vì M thuộc (d) nên
-4 = 3.2 + b
=> b = -10
=> (d) y = 3x - 10
Phương trình hoành độ giao điểm:
\(x^2=2x-m+9\Leftrightarrow x^2-2x+m-9=0\) (1)
(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung
\(\Leftrightarrow\) (1) có 2 nghiệm pb trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m-9< 0\Rightarrow m< 9\)
a) Bạn tự vẽ
b) Phương trình hoành độ giao điểm của (P) và (d)
\(x^2=-x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
+) Với \(x=1\) thì \(y=1\)
+) Với \(x=-2\) thì \(y=4\)
Vậy (P) cắt (d) tại 2 điểm \(\left(1;1\right)\) và \(\left(-2;4\right)\)
a) Ta có đồ thị hàm số y = ax2 đi qua điểm (-2 ; 2)
b) Tại x = -3 ta có:
Vậy điểm có hoành độ x = -3 thì tung độ bằng 4,5.
c) Hoành độ các điểm có tung độ y =8 thỏa mãn phương trình: ⇔ x2 = 16 ⇔ x = 4 hoặc x = -4.
Vậy các điểm thuộc parabol có tung độ bằng 8 là (4; 8) và (-4; 8).