Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(5A=5+5^2+...+5^{51}\)
\(\Leftrightarrow4A=5^{51}-1\)
hay \(A=\dfrac{5^{51}-1}{4}\)
Bài 3:
\(S=\left(1^2+2^3+3^3+...+10^2\right)\cdot2=385\cdot2=770\)
a, ( 3 - 0,6) - ( 7 + 3\(\dfrac{1}{4}\) - \(\dfrac{8}{5}\)) - ( 9 - 2\(\dfrac{1}{4}\))
= 2,4 - (7 + 3,25 - 1,6) - (9 - 2,25)
= 2,4 - 7 - 3,25 + 1,6 - 9 + 2,25
= (2,4 + 1,6) - (7+ 9) - ( 3,25 - 2,25)
= 4 - 16 - 1
= - 12 - 1
= -13
b, ( - \(\dfrac{5}{8}\) + \(\dfrac{7}{6}\) - \(\dfrac{0}{8}\)) - (\(\dfrac{5}{6}\) - \(\dfrac{7}{8}\) - 1,4) + ( \(\dfrac{3}{4}\) + \(\dfrac{5}{3}\) + \(\dfrac{12}{5}\))
= - \(\dfrac{5}{8}\) + \(\dfrac{7}{6}\) - \(\dfrac{5}{6}\) + \(\dfrac{7}{8}\) + \(\dfrac{7}{5}\) + \(\dfrac{3}{4}\) + \(\dfrac{5}{3}\) + \(\dfrac{12}{5}\)
= (- \(\dfrac{5}{8}\) + \(\dfrac{7}{8}\)) + (\(\dfrac{7}{6}\) - \(\dfrac{5}{6}\)) + ( \(\dfrac{7}{5}\) + \(\dfrac{12}{5}\)) + \(\dfrac{3}{4}\) + \(\dfrac{5}{3}\)
= \(\dfrac{1}{4}\) + \(\dfrac{1}{3}\) + \(\dfrac{19}{5}\) + \(\dfrac{3}{4}\) + \(\dfrac{5}{3}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + ( \(\dfrac{1}{3}\) + \(\dfrac{5}{3}\)) + \(\dfrac{19}{5}\)
= 1 + 2 + 3,8
= 6,8
f) \(\left(1:\frac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\cdot\frac{1}{49}\)
\(=\left(1\cdot7\right)^2:\left(2^6:2^5\right)\cdot\frac{1}{49}=7^2\cdot\frac{1}{2}\cdot\frac{1}{49}=49\cdot\frac{1}{49}\cdot\frac{1}{2}=\frac{1}{2}\)
g) \(\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{\left(2^2\right)^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^5}\)
\(=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\left(3^5-3^6\right)}{2^{12}\left(3^6+3^5\right)}=\frac{2^{12}\left[3^5\left(1-3\right)\right]}{2^{12}\left[3^5\left(3+1\right)\right]}=\frac{2^{12}\cdot3^5\cdot\left(-2\right)}{2^{12}\cdot3^5\cdot4}=\frac{-2}{4}=-\frac{1}{2}\)
Bài giải
\(f,\text{ }\left(1\text{ : }\frac{1}{7}\right)^2\left[\left(2^2\right)^3\text{ : }2^5\right]\cdot\frac{1}{49}\)
\(=7^2\left(2^6\text{ : }2^5\right)\cdot\frac{1}{7^2}\)
\(=2\)
\(g,\text{ }\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\cdot3^5\cdot\left(1-3\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}=-\frac{2}{4}=-\frac{1}{2}\)