Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p10-1 = (p5)2-12 = (p5-1)(p5+1)
Nhận thấy: (p5-1) và (p5+1) là 2 số chẵn hoặc 2 số lẻ liên tiếp => có ít nhất 1 số khác 1
=> p10-1 sẽ chia hết cho ít nhất là 1 số
=> p10-1 là hợp số
Ta có nhận xét: Trong 3 số liên tiếp bao giờ cũng có 1 số chia hết cho 3.
Ta có: 2n - 1 , 2n , 2n + 1 là ba số liên tiếp mà theo giả thiết 2n - 1 là số nguyên tố lớn hơn 3 (vì n > 2) => 2n - 1 không chia hết cho 3; Số 2n cũng không chia hết cho 3 => Số 2n + 1 phải chia hết cho 3 => 2n + 1 là hợp số.
1.+/n ko chia het cho3
*Voi n=3k+1(dk cua k)
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k
=3(3k^2+2k) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 1(n>2)
*Voi n=3p+2(dk cua p)
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1
=9p^2+12p+3
=3(3p^2+4p+1) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 2(n>2)
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3
=>n^2-1 và n^2+1 ko thể đồng thời là
số nguyên tố voi n>2;n ko chia hết cho 3
nếu p lẻ =>p^10 lẻ => p^10 - 1 chẵn là hợp số
nếu p chẵn => p=2=> p^10-1=1023 chia hết cho 3 là hợp số
Vậy p^10-1 là hợp số
Ta có : 2n-1 , 2n , 2n+1 là 3 số tự nhiên liên tiếp ( n > 2 )
ta thấy trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3
2n-1 là số nguyên tố
2n \(⋮\)2 và > 2 nên 2n là hợp số mà 2n \(⋮̸\)3
nên 2n + 1 \(⋮\)3 và > 3 vì 2n-1 và 2n đều \(⋮̸\) 3 ( n > 2 )
\(\Rightarrow\)2n + 1 là hợp số