Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hình thoi là ABCD với \(A\left(0;1\right)\)
Do tọa độ A thỏa \(x+7y-7=0\) nên đó là cạnh chứa A, ko mất tính tổng quát, giả sử đó là cạnh AB
Tọa độ A ko thỏa pt đường chéo nên đó là đường chéo BD
\(\Rightarrow\) Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+7y-7=0\\x+2y-7=0\end{matrix}\right.\) \(\Rightarrow B\left(7;0\right)\)
Phương trình AC qua A vuông góc BD: \(2\left(x-0\right)-1\left(y-1\right)=0\Leftrightarrow2x-y+1=0\)
Tọa độ tâm I là nghiệm: \(\left\{{}\begin{matrix}x+2y-7=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(1;3\right)\)
I là trung điểm AC \(\Rightarrow C\left(2;5\right)\)
I là trung điểm BD \(\Rightarrow D\left(-5;-3\right)\)
Biết tọa độ các đỉnh, bạn tự viết pt các cạnh nhé
Thay điểm A vào đường thẳng d1 và d2 ta thấy A đều không thuộc hai đường thẳng đó
\(\Rightarrow\) d1, d2 là phương trình của các đường cao kẻ từ đỉnh B và đỉnh C
Giả sử d1 là đường cao kẻ từ B
Vì \(d_1\perp AC\Rightarrow\) phương trình đường thẳng AC có dạng:
\(x-y+m=0\)
Vì \(A\left(2;2\right)\in AC\Rightarrow2-2+m=0\Rightarrow m=0\)
\(\Rightarrow x-y=0\left(AC\right)\)
\(\Rightarrow\) C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-y=0\left(AC\right)\\9x-3y+4=0\left(d_2\right)\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{2}{3}\)
\(\Rightarrow C=\left(-\dfrac{2}{3};-\dfrac{2}{3}\right)\)
Tương tự ta tìm được \(B=\left(-1;3\right)\)
Phương trình đường thẳng qua O và song song AB có dạng: x−y=0x−y=0
⇒⇒ Tọa độ M là nghiệm của hệ: {x+3y−6=0x−y=0{x+3y−6=0x−y=0 ⇒M(32;32)⇒M(32;32)
Phương trình đường thẳng BC qua M, nhận (1;1)(1;1) là 1 vtpt có dạng:
1(x−32)+1(y−32)=0⇔x+y−3=01(x−32)+1(y−32)=0⇔x+y−3=0
Tọa độ B là nghiệm của hệ: {x−y+5=0x+y−3=0{x−y+5=0x+y−3=0 ⇒B⇒B
M là trung điểm BC ⇒⇒ tọa độ C
O là trung điểm AC ⇒⇒ tọa độ A
O là trung điểm BD
cạnh thứ ba 2x-5y+3=0. cạnh thứ tư 2x-5y-26=0, đường chéo thứ hai 7x-3x-33=0
Thay \(\left(-2;2\right)\) vào 2 pt 2 cạnh đều ko thỏa \(\Rightarrow\) 2 cạnh còn lại đi qua (-2;2)
2 cạnh đã cho ban đầu có vtpt lần lượt là (1;-1) và (1;3), do đó 2 cạnh còn lại cũng lần lượt nhận (1;-1) cà (1;3) là vtpt (do các cặp cạnh đối của hình bình hành song song)
Phương trình 2 cạnh còn lại là:
\(1\left(x+2\right)-1\left(y-2\right)=0\Leftrightarrow x-y+4=0\)
\(1\left(x+2\right)+3\left(y-2\right)=0\Leftrightarrow x+3y-4=0\)