\(y=\left|2m^2-7\right|x-27\)đi qua điểm \(M\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

\(\left|2m^2-7\right|-27=-2\)

\(\Rightarrow\left|2m^2-7\right|=25\)

\(\Rightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\7-2m^2=25\left(loại\right)\end{array}\right.\)

\(\Rightarrow m=\pm4\)

19 tháng 8 2016

\(\left|2m^2-7\right|-27=-2\)

\(\Leftrightarrow\left|2m^2-7\right|=25\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\7-2m^2=25\left(loai\right)\end{array}\right.\)

\(\Leftrightarrow m=\pm4\)

19 tháng 8 2016

ĐTHS trên đi qua M(1;-2) tức là \(-2=\left|2m^2-7\right|-27\Leftrightarrow\left|2m^2-7\right|=25\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\2m^2-7=-25\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2=32\left(\text{nhận}\right)\\2m^2=-18\left(\text{loại}\right)\end{array}\right.\)\(\Leftrightarrow m^2=16\Leftrightarrow m=\pm4\)

2 tháng 1 2018

ta có \(2x^2+2xy+2y^2+2x-2y+2=0\)

 <=>\(x^2+2xy+y^2+x^2+2x+1+y^2-2y+1=0\)

  <=>\(\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

<=>\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

thay vào, ta có M=\(0^{30}+\left(-1+2\right)^{12}+\left(1-1\right)^{2017}=1\)

Vậy M=1 

^_^

4 tháng 5 2017

bài 1:

a) 4n+4+3n-6<19

<=> 7n-2<19

<=> 7n<21 <=> n< 3

b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43

-6n+25\(\leq\)43

-6n\(\leq\)18

n\(\geq\)-3

19 tháng 7 2017

bài 1 ở chỗ nào vậy

25 tháng 6 2019

Baif2:

A=\(12x^2+20x-8+9\) 

   =\(4\left(3x^2+5x-2\right)+9\) 

   =4.0+9

    = 9

vậy A=............

hc tốt

25 tháng 6 2019

\(3x^2+5x-2=0\)

\(\Leftrightarrow3x^2-x+6x-2=0\)

\(\Leftrightarrow x\left(3x-1\right)+2\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}\)

9 tháng 4 2018

\(a)\) Ta có : 

\(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)

\(\Leftrightarrow\)\(\frac{3m-6+12m+4}{12}< 0\) ( quy đồng ) 

\(\Leftrightarrow\)\(3m-6+12m+4< 0\)

\(\Leftrightarrow\)\(\left(12m+3m\right)+\left(4-6\right)< 0\)

\(\Leftrightarrow\)\(15m-2< 0\)

\(\Leftrightarrow\)\(15m< 2\)

\(\Leftrightarrow\)\(m< \frac{2}{15}\)

Vậy để \(\frac{m-2}{4}+\frac{3m+1}{3}\) có giá trị âm thì \(m< \frac{2}{15}\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(b)\) Ta có : 

\(\frac{m-4}{6m+9}>0\)

\(\Leftrightarrow\)\(m-4>0\) ( nhân hai vế cho \(6m+9\) ) 

\(\Leftrightarrow\)\(m>4\)

Vậy để \(\frac{m-4}{6m+9}\) có giá trị dương thì \(m>4\)

Chúc bạn học tốt ~ 

10 tháng 12 2019

Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)

<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)

<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)

(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0

( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y

nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y

Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

<=> \(x=y=\frac{1}{3}\)

10 tháng 12 2019

Làm tiếp:

Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P

ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)

8 tháng 2 2017

khai triển hằng đẳng thức và rút gọn đưa về phương trình sau:

\(x\left(3m^2-8m+4\right)=6m+3\)

để pt vô nghiệm thì: \(\hept{\begin{cases}3m^2-8m+4=0\\6m+3\ne0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}3m^2-8m+4=0\\6m+3\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne-\frac{1}{2}\\\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}}\)\(\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}\)

Đáp án A

8 tháng 3 2016

\(1.\)   Với mọi  \(x+y+z=0\)  \(\left(1\right)\), ta có:  \(\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\)   \(\left(2\right)\)

Thật vậy,  từ  \(\left(1\right)\)  \(\Rightarrow\)  \(x=-\left(y+z\right)\)

                              \(\Leftrightarrow\)  \(x^2=\left[-\left(y+z\right)\right]^2\)

                              \(\Leftrightarrow\)  \(x^2=y^2+2yz+z^2\)

                              \(\Leftrightarrow\)  \(x^2-y^2-z^2=2yz\)

                              \(\Leftrightarrow\)  \(\left(x^2-y^2-z^2\right)^2=4y^2z^2\)

                              \(\Leftrightarrow\)   \(x^4+y^4+z^4-2x^2y^2+2y^2z^2-2x^2z^2=4y^2z^2\)

                              \(\Leftrightarrow\)   \(x^4+y^4+z^4=4y^2z^2+2x^2y^2-2y^2z^2+2x^2z^2\)

                              \(\Leftrightarrow\)  \(x^4+y^4+z^4=2\left(x^2y^2+y^2z^2+x^2z^2\right)\)  \(\left(3\right)\)

Cộng  \(x^4+y^4+z^4\)  vào hai vế của đẳng thức  \(\left(3\right)\), ta được đẳng thức \(\left(2\right)\)

Vậy, đẳng thức  \(\left(2\right)\)  đã được chứng minh với mọi  \(x+y+z=0\) 

Khi đó,  \(M=2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2=1\)

Do đó,  giá trị  \(M=1\)

                                                              -Charlotte-

8 tháng 3 2016

Nhờ mọi người ghi giúp mình cách giải nhé! Cảm ơn mọi người nhiều.