K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DN
độ dài 3 cạnh của tam giác tỉ lệ với 2,3,4 . 3 đường cao tương ứng với 3 cạnh đó tỉ lệ với 3 số nào?
0
LA
15 tháng 3 2017
Gọi độ dài 3 cạnh của tam giác đó là x;y;z (x;y;z >0; x:y:z=2:3:4 ) ; ba chiều cao tương ứng là a;b;c
Đặt x = 2*t ; y = 3*t ; z = a*t
Gọi S là diện tích tam giác đó 2S = x*a = y*b = z*c =>a*2*t = b*3*t = c*4*t =>2*a = 3*b = 4*c => a/6 = b/4 = c/3
Vậy ba chiều cao tương ứng tỉ lệ với 6;4;3
Gọi độ dài 3 cạnh của tam giác lần lượt là a1; a2 và a3
và các đường cao tương ứng lần lượt là b1; b2 và b3
Theo bài ra ta có:
\(S=\frac{1}{2}\left(a1.b1\right)=\frac{1}{2}\left(a2.b2\right)=\frac{1}{2}\left(a3.b3\right)\)
\(\Rightarrow a1=\frac{2S}{b1};a2=\frac{2S}{b2};a3=\frac{2S}{b3}\)
Mà độ dài 3 cạnh của tam giác tỉ lệ với 4;6;8 \(\Rightarrow\frac{a1}{4}=\frac{a2}{6}=\frac{a3}{8}\)
\(\Rightarrow\frac{2S}{4b1}=\frac{2S}{6b2}=\frac{2S}{8b3}\)
\(\Rightarrow4b1=6b2=8b3\)
\(\Rightarrow\)3 đường cao của tam giác đó tỉ lệ với \(\frac{1}{4};\frac{1}{6};\frac{1}{8}\)
Gọi độ dài 3 cạnh tam giác lần lượt là x ; y ; z và 3 chiều cao là t; o; p .
Đặt \(x=\frac{2S}{t},y=\frac{2S}{o},z=\frac{2S}{p}\)(trong đó S là diện tích tam giác)
Vì độ dài 3 cạnh tam giác tỉ lệ vs 4; 6; 8
* Ta có: \(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}\Rightarrow\hept{\begin{cases}\frac{2S}{4t}\\\frac{2S}{6o}\\\frac{2S}{8p}\end{cases}}\)
\(\Rightarrow4t=6o=8p\Rightarrow\hept{\begin{cases}\frac{4t}{60}\\\frac{6o}{60}\\\frac{8p}{60}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{t}{15}\\\frac{o}{12}\\\frac{p}{10}\end{cases}}\)
Vậy KQ tìm đc là : 15; 12; 10