Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi độ dài 3 cạnh của tam giác ấy là a,b,c và chúng lần lượt tỷ lệ với 3;5;7
theo đề ra ta có : \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và a+b+c=150
áp dụng tính chất của dãy tỷ số bằng nhau :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+4}=\frac{150}{12}=\frac{25}{2}\)
thay số vào rồi tính ạ
Gọi độ dài 3 cạnh tam giác lần lượt là a,b,c
ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\\a+b+c=45\end{matrix}\right.\)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{45}{15}=3\)
\(\dfrac{a}{3}=3\Rightarrow a=9cm\\ \dfrac{b}{5}=3\Rightarrow b=15cm\\ \dfrac{c}{7}=3\Rightarrow c=21cm\)
\(\dfrac{a}{3}\)=\(\dfrac{b}{5}\)=\(\dfrac{c}{7}\)=\(\dfrac{a+b+c}{3+5+7}\)=\(\dfrac{45}{15}\)=3
a= 9; b= 15; c=21
Gọi 3 cạnh của tam giác là x;y và z
=>x+y+z=60cm
Ta có:
x:y:z=3:5:7
=>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau
=>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{3+5+7}=\frac{60}{15}=4\)
=>x/3=4; y/5=4 và z/7=4
=>x=12;y=20;z=28
gọi độ dài 3 cạnh của tam giác đó lần lượt là x;y;z(x;y;z>0)
ta có :
x/3=y/5=z/7 và x+y+z=150
áp dụng tc dãy ts = nhau ta có :
x/3=y/5=z/7=x+y+z/3+5+7=150/15=10
=>x/3=10=>x=30 cm
=>y/5=10=>y=50 cm
=>z/7=10=>z=70 cm
vậy ...
Gọi độ dài ba cạnh là x;y;z
Theo bài ra ta có : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=150\)
Áp dụng dãy tỉ bằng nhau : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=\frac{150}{15}=10\)
\(\Rightarrow\) \(\frac{x}{3}=10\Rightarrow x=30\)
\(\Rightarrow\frac{y}{5}=10\Rightarrow x=50\)
\(\Rightarrow\)\(\frac{z}{7}=10\Rightarrow z=70\)
P/s : Sai đừng trách nha - Bởi mình mới lớp 6
Gọi độ dài mỗi cạnh của tam giác lần lượt là x(cm),y(cm),z(cm) . Theo đề bài ta có :
\(x:y:z=3:4:6\)hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}\)và x + y + z = 65
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{x+y+z}{3+4+6}=\frac{65}{13}=5\)
=> \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{6}=5\end{cases}}\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=30\end{cases}}\)
gọi độ dài mỗi cạnh lần lượt là A, B, C
Ta có: \(\frac{A}{3}=\frac{B}{4}=\frac{C}{6}=\frac{A+B+C}{3+4+6}=\frac{65}{13}=5\)
Độ dài mỗi cạnh là:
C1:\(\frac{A}{3}=5\Rightarrow A=5\cdot3=15cm\)
C2:\(\frac{B}{4}=5\Rightarrow B=5\cdot4=20cm\)
C3:\(\frac{C}{6}=5\Rightarrow C=5\cdot6=30cm\)
\(\Rightarrow\)Độ dài lần lượt của ba cạnh của hình tam giác là 15cm, 20cm, 30cm
a) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)
a=9, b=15, c=21
b) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c-a}{7-3}=\frac{20}{4}=5\)
a= 15; b=25; c= 35
Gọi độ dài 3 cạnh của tam giác lần lượt là a,b,c ta có
a/3=b/5=c/7 và a+b+c=150
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{150}{15}=10\)
=> a=3.10=30
b=5.10=50
c=7.10=70
Gọi x, y, z là độ dài ba cạnh tam giác đó
Theo đề bài, ta có:
x/3 = y/5 = z/7 = x+y+z/3+5+7= 150/15=10
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/3 = 10 => x = 10 . 3 = 30
y/5 = 10 => x = 10 . 5 = 50
z/7 = 10 => x = 10 . 7 =70
Vậy độ dài môi cạnh ủa tam giác đó lần lượt là: 30, 50, 70