Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Suy ra xA=x+x^2+x^3+...+x^101
xA-A=x^101-1
A(x-1)=x^101-1
A=(x^101-1)/(x-1)
\(A=1+x+x^2+...+x^{99}+x^{100}\Rightarrow x.A=x+x^2+x^3+...+x^{100}+x^{101}\)
\(\Rightarrow x.A-A=\left(x+x^2+x^3+...+x^{100}+x^{101}\right)-\left(1+x+x^2+...+x^{99}+x^{100}\right)\)
\(\Rightarrow\left(x-1\right).A=x^{101}-1\Rightarrow A=\frac{x^{101}-1}{x-1}\) (đpcm)
a) Ta có: f(x) = x100+x99+x98+...+x+1
=>2f(x) = x101+x100+x99+...+x+1
=>f(x) = 2f(x)-f(x)=(x101+x100+...+x+1)-(x100+x99+...+x+1)= x101-1
=>f(2) = 2101-1
=>f(-2) = (-2)101-1
b)câu còn lại tự giải :D
f(x) = x100+x99+x98+...+x+1
=>2f(x) = x101+x100+x99+...+x
=>f(x) = 2f(x)-f(x)=(x101+x100+...+x)-(x100+x99+...+x+1)= x101-1
=>f(2) = 2.101-1 = 201
=>f(-2) = (-2)101-1 = -203
*) f(1) = 1^100 + 1^99 + ...+ 1 + 1
= 1+ 1 + 1 + ...+ 1 + 1 (101 số 1)
= 101
tương tự:
*) f(-1) = -1 - 1 - 1 ... - 1 - 1 + 1 (100 chữ số 1)
= -100 + 1 = -99
*) đặt f(2) = 2^100 + 2^99 + ...+ 2^2 + 2 + 1 = A
=> 2A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2
=> 2A - A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2 - ( 2^100 + 2^99 + ...+ 2^2 + 2 + 1)
<=> A = 2^101 - 1
=> f(2) = 2^101 - 1
tương tự:
*) đặt f(-2) = -2^100 - 2^99 ...- 2^2 - 2 - 1 = B
=> 2B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2
=> 2B -B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2 - ( -2^100 - 2^99 ...- 2^2 - 2 - 1)
<=> B = -2^101 + 1
=> f(-2) = -2^101 + 1
g(1) = 1 + 1^3 + 1^5 + ... + 1^101 (51 số 1)
= 51
g(-1) = -1 - 1^3 - 1^5.... - 1^101 (51 số 1)
= -51
đặt g(3) = 3 + 3^3 + 3^5 + ...+ 3^101 = A
=> 3^2 * A = 3^3 + 3^5 + ....+ 3^103
=> 9A - A = 3^3 + 3^5 + ....+ 3^103 - (3 + 3^3 + 3^5 + ...+ 3^101)
=> 8A = -3 + 3^103
=> A = \(\dfrac{3^{103}-3}{8}\)
=> g(3) = \(\dfrac{3^{103}-3}{8}\)
Tìm các giá trị nhỏ nhất của:
a) A = ( x - 1 )2 + ( y - 3 )2 + 5
b) B = / x - 100 / + ( x - y )2 + 100
a)\(GTNN\)của \(A=5\)tại \(x=1;y=3\)
b)\(GTNN\)của \(B=100\)tại \(x=y=100\)