Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 4cm
a) Xét △ABD và △ABC có :
AB chung (gt)
AD = AC (gt)
\(\Rightarrow\)△ABD = △ABC (hai cạnh góc vuông)
b) Vì △ABD = △ABC
\(\Rightarrow\)BD = BC
\(\Rightarrow\)△BCD cân tại B
\(\Rightarrow\widehat{BCD}=\widehat{BDC}=60^o\)
\(\Rightarrow\widehat{CBD}=180^o-\left(\widehat{BCD}+\widehat{BDC}\right)\)
\(\Rightarrow\widehat{CBD}=60^o\)
Ta có : \(\widehat{CBD}=\widehat{BCD}=\widehat{BDC}=60^o\)
\(\Rightarrow\)△BCD là tam giác đều
c) Xét △ABC vuông tại A có \(\widehat{ACB}=60^o\)
\(\Rightarrow\)△ABC là tam giác nửa đều
\(\Rightarrow\)BC = 2AC
\(\Rightarrow\)BC = 8 cm
Vì AD = AC (gt)
\(\Rightarrow\)AD = 4cm
Vậy BC = 8 cm
AD = 4cm
B A D C Hình ảnh chỉ mang tính chất minh họa
a) Theo bài ra ta có \(\hept{\begin{cases}\widehat{CAB}=90^o\\\widehat{DAB}+\widehat{CAB}=180^o\end{cases}}\) ( 2 góc kề bù )
\(\Rightarrow\widehat{DAB}=90^o\)
+) Xét \(\Delta ABC\) vuông tại A và \(\Delta ABD\) vuông tại A có
AB : cạnh chung
AC = AD ( gt)
\(\Rightarrow\)\(\Delta ABC\) = \(\Delta ABD\) ( c-g-c )
b) Theo câu a ta có \(\Delta ABC\) = \(\Delta ABD\)
\(\Rightarrow BC=BD\) (2 cạnh tương ứng )
+) Xét \(\Delta BCD\) có
\(\hept{\begin{cases}BC=BD\\\widehat{C}=60^o\end{cases}}\left(gt\right)\)
\(\Rightarrow\)\(\Delta BCD\) là tam giác đều
cTheo bài ra ta có \(\hept{\begin{cases}AD=AC\\AC=4cm\end{cases}}\) ( gt)
\(\Rightarrow AD=4\) cm
+) Xét \(\Delta ABC\) vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\) ( tính chất tam giác vuông )
\(\Rightarrow\widehat{ABC}+60^o=90^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
+) Xét \(\Delta ABC\) vuông tại A và \(\widehat{ABC}=30^o\)
\(\Rightarrow AC=\frac{1}{2}BC\) ( t/c trong 1 tam giác vuông có 1 góc = 30 độ thì cạnh đối diện vs góc 30 độ bằng 1 nửa cạnh huyền )
\(\Rightarrow BC=2.AC\)
\(\Rightarrow BC=2.4=8\) ( cm)
Vậy AD = 4 ( cm) và BC = 8 ( cm)
!! K chắc
@@ Học tốt
Chiyuki Fujito
B A C D E H
Trước khi làm mình có lưu ý là mình sử dụng H luôn cho câu b nhé, dù ở câu c mới xuất hiện.
a/ Xét \(\Delta ABD\)vuông tại \(D\)có:
\(AD^2+BD^2=AB^2\left(pytago\right)\)
\(AD^2+8^2=10^2\)
\(AD^2=10^2-8^2=100-64=36\)
\(\Rightarrow AD=\sqrt{36}=6\left(cm\right)\)
b/ Xét tam giác ABC có 2 đường cao BD;CE cắt nhau tại H => H là trực tâm tam giác ABC
=> AH là đường cao thứ 3 (Vậy thôi đủ xài)
=> AH cũng là đường phân giác vì tam giác ABC cân tại A
Xét \(\Delta AEH\)và \(\Delta ADH\)có:
\(\hept{\begin{cases}AH:chung\\\widehat{EAH}=\widehat{DAH}\left(cmt\right)\\\widehat{AEH}=\widehat{ADH}=90^0\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AEH=\Delta ADH\left(g.c.g\right)\)
\(\Rightarrow AE=AD\)
Xét \(\Delta AEC\)và \(\Delta ABD\)có:
\(\hept{\begin{cases}AE=AD\left(cmt\right)\\\widehat{AEC}=\widehat{ADB}=90^0\left(gt\right)\\\widehat{BAC}:chung\end{cases}}\)
\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)
\(\Rightarrow CE=BD\)
c/ (đã chứng minh câu b)
d/ Vì tam giác AEC = tam giác ADB
=> \(\widehat{ACE}=\widehat{ABD}\)
Mà: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{DBC}=\widehat{ECB}\)
\(\Rightarrow\Delta BHC\)cân tại \(H\)
e/ Xét \(\Delta AHD\)vuông tại \(H\)có:
\(AD^2+HD^2=AH^2\left(pytago\right)\)
\(6^2+5^2=AH^2\)(vì 36 + 25 = 61)
\(\Rightarrow AH=\sqrt{61}\approx7,8\left(cm\right)\)
Lấy E∈AD�∈�� sao cho AE=AB��=�� mà AD=AB+AC��=��+�� nên AC=DE.��=��.
ΔABEΔ��� cân có ˆBAD=60∘���^=60∘ nên ΔABEΔ��� là tam giác đều suy ra AE=EB.��=��.
Thấy ˆBED=ˆEBA+ˆEAB=120∘���^=���^+���^=120∘ (góc ngoài tại đỉnh E� của tam giác ABE��� ) nên ˆBED=ˆBAC(=120∘)���^=���^(=120∘)
Suy ra ΔEBD=ΔABC(c.g.c)⇒ˆB1=ˆB2Δ���=ΔA��(�.�.�)⇒�1^=�2^ (hai góc tương ứng bằng nhau) và BD=BC��=�� (hai cạnh tương ứng)
Lại có ˆB1+ˆB3=60∘�1^+�3^=60∘ nên ˆB2+ˆB3=60∘.�2^+�3^=60∘.
ΔBCDΔ��� cân tại B� có ˆCBD=60∘���^=60∘ nên nó là tam giác đều.
Đây nhé!
cho GT rồi thì cm KL gì