K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

làm kiểu j vậy

21 tháng 2 2020

A B C D 4cm

a) Xét △ABD và △ABC có :

           AB chung (gt)

           AD = AC (gt)

\(\Rightarrow\)△ABD = △ABC (hai cạnh góc vuông)

b) Vì △ABD = △ABC

\(\Rightarrow\)BD = BC

\(\Rightarrow\)△BCD cân tại B

\(\Rightarrow\widehat{BCD}=\widehat{BDC}=60^o\)

\(\Rightarrow\widehat{CBD}=180^o-\left(\widehat{BCD}+\widehat{BDC}\right)\)

\(\Rightarrow\widehat{CBD}=60^o\)

Ta có : \(\widehat{CBD}=\widehat{BCD}=\widehat{BDC}=60^o\)

\(\Rightarrow\)△BCD là tam giác đều

c) Xét △ABC vuông tại A có \(\widehat{ACB}=60^o\)

\(\Rightarrow\)△ABC là tam giác nửa đều

\(\Rightarrow\)BC = 2AC

\(\Rightarrow\)BC = 8 cm

Vì AD = AC (gt)

\(\Rightarrow\)AD = 4cm

Vậy BC = 8 cm

       AD = 4cm

21 tháng 2 2020

B A D C     Hình ảnh chỉ mang tính chất minh họa

a) Theo bài ra ta có \(\hept{\begin{cases}\widehat{CAB}=90^o\\\widehat{DAB}+\widehat{CAB}=180^o\end{cases}}\)  ( 2 góc kề bù )

\(\Rightarrow\widehat{DAB}=90^o\)

+) Xét \(\Delta ABC\) vuông tại A và \(\Delta ABD\) vuông tại A có

AB : cạnh chung

AC =  AD  ( gt)

\(\Rightarrow\)\(\Delta ABC\) = \(\Delta ABD\)  ( c-g-c )

b) Theo câu a ta có \(\Delta ABC\) =    \(\Delta ABD\)

\(\Rightarrow BC=BD\)  (2 cạnh tương ứng )

   +) Xét \(\Delta BCD\) có

\(\hept{\begin{cases}BC=BD\\\widehat{C}=60^o\end{cases}}\left(gt\right)\)

\(\Rightarrow\)\(\Delta BCD\)  là tam giác đều

cTheo  bài ra ta có \(\hept{\begin{cases}AD=AC\\AC=4cm\end{cases}}\)  ( gt)

\(\Rightarrow AD=4\) cm

+) Xét \(\Delta ABC\) vuông tại A  

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)  ( tính chất tam giác vuông )

\(\Rightarrow\widehat{ABC}+60^o=90^o\)

\(\Rightarrow\widehat{ABC}=30^o\)

+) Xét \(\Delta ABC\) vuông tại A và \(\widehat{ABC}=30^o\)

\(\Rightarrow AC=\frac{1}{2}BC\)  ( t/c trong 1 tam giác vuông có 1 góc = 30 độ thì cạnh đối diện vs   góc 30 độ bằng 1 nửa cạnh huyền )

\(\Rightarrow BC=2.AC\)

\(\Rightarrow BC=2.4=8\)  ( cm)

Vậy AD = 4 ( cm) và BC = 8  ( cm)

!! K chắc

@@ Học tốt

Chiyuki Fujito

24 tháng 4 2017

B A C D E H

Trước khi làm mình có lưu ý là mình sử dụng H luôn cho câu b nhé, dù ở câu c mới xuất hiện.

a/ Xét \(\Delta ABD\)vuông tại \(D\)có:

\(AD^2+BD^2=AB^2\left(pytago\right)\)

\(AD^2+8^2=10^2\)

\(AD^2=10^2-8^2=100-64=36\)

\(\Rightarrow AD=\sqrt{36}=6\left(cm\right)\)

b/ Xét tam giác ABC có 2 đường cao BD;CE cắt nhau tại H => H là trực tâm tam giác ABC

=> AH là đường cao thứ 3 (Vậy thôi đủ xài)

=> AH cũng là đường phân giác vì tam giác ABC cân tại A

Xét \(\Delta AEH\)và \(\Delta ADH\)có:

\(\hept{\begin{cases}AH:chung\\\widehat{EAH}=\widehat{DAH}\left(cmt\right)\\\widehat{AEH}=\widehat{ADH}=90^0\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AEH=\Delta ADH\left(g.c.g\right)\)

\(\Rightarrow AE=AD\)

Xét \(\Delta AEC\)và \(\Delta ABD\)có:

\(\hept{\begin{cases}AE=AD\left(cmt\right)\\\widehat{AEC}=\widehat{ADB}=90^0\left(gt\right)\\\widehat{BAC}:chung\end{cases}}\)

\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)

\(\Rightarrow CE=BD\)

c/ (đã chứng minh câu b)

d/ Vì tam giác AEC = tam giác ADB 

=> \(\widehat{ACE}=\widehat{ABD}\)

Mà: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{DBC}=\widehat{ECB}\)

\(\Rightarrow\Delta BHC\)cân tại \(H\)

e/ Xét \(\Delta AHD\)vuông tại \(H\)có:

\(AD^2+HD^2=AH^2\left(pytago\right)\)

\(6^2+5^2=AH^2\)(vì 36 + 25 = 61)

\(\Rightarrow AH=\sqrt{61}\approx7,8\left(cm\right)\)

16 tháng 4 2017

17 đó

k nha

chúc bạn học giỏi

16 tháng 4 2017

17 nha

2 tháng 2 2023

Lấy EAD�∈�� sao cho AE=AB��=�� mà AD=AB+AC��=��+�� nên AC=DE.��=��.

ΔABEΔ��� cân có ˆBAD=60���^=60∘ nên ΔABEΔ��� là tam giác đều suy ra AE=EB.��=��.

Thấy ˆBED=ˆEBA+ˆEAB=120���^=���^+���^=120∘  (góc ngoài tại đỉnh E của tam giác ABE��� )  nên ˆBED=ˆBAC(=120)���^=���^(=120∘)

Suy ra ΔEBD=ΔABC(c.g.c)ˆB1=ˆB2Δ���=ΔA��(�.�.�)⇒�1^=�2^ (hai góc tương ứng bằng nhau) và BD=BC��=�� (hai cạnh tương ứng)

Lại có ˆB1+ˆB3=60�1^+�3^=60∘ nên ˆB2+ˆB3=60.�2^+�3^=60∘.

ΔBCDΔ��� cân tại B có ˆCBD=60���^=60∘ nên nó là tam giác đều.

Đây nhé!

1 tháng 2 2023

lười làm lắm