K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Lời giải:

Ta có:
\(a^2-ab+b^2\vdots 9\vdots 3\)

\(\Leftrightarrow a^2+2ab+b^2-3ab\vdots 3\)

\(\Leftrightarrow (a+b)^2-3ab\vdots 3\Rightarrow (a+b)^2\vdots 3\Rightarrow a+b\vdots 3\) (do $3$ là số nguyên tố)

\(\Rightarrow (a+b)^2\vdots 9\)

\(a^2-ab+b^2=(a+b)^2-3ab\vdots 9\) (giả thiết)

Suy ra \(3ab\vdots 9\Rightarrow ab\vdots 3\). Do đó tồn tại ít nhất một trong 2 số $a$ hoặc $b$ chia hết cho $3$. Không mất tổng quát, giả sử $a$ chia hết cho $3$

Khi đó \(a(a-b)\vdots 3\), mà \(a^2-ab+b^2=a(a-b)+b^2\vdots 3\)

\(\Rightarrow b^2\vdots 3\Rightarrow b\vdots 3\)

Vậy $a,b$ đều chia hết cho $3$

11 tháng 5 2022

BN THAM KHẢO:

undefined

 

3 tháng 1 2021

Ta có :

\(a+b=c^3-2018\Leftrightarrow a+b+c=\left(c-1\right).c\left(c+1\right)-2016c⋮6\)

Mặt khác :

\(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)=\left(a-1\right).a\left(a+1\right)+\left(b-1\right)b.\left(b+1\right)+\left(c-1\right).c\left(c+1\right)⋮6\)

Do vậy \(a^3+b^3+c^3⋮6\)

3 tháng 1 2021

thằng tuấn khôi , 

16 tháng 1 2019

1/ \(4\left(a^2-ab+b^2\right)⋮3\)

\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮3\)

\(\Rightarrow2a-b⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮9\)

\(\Rightarrow3b^2⋮9\)

\(\Rightarrow b⋮3\)

\(\Rightarrow a⋮3\)

16 tháng 1 2019

Câu 2 làm hoi dài nên lười