K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Câu hỏi của Thiên Ân - Toán lớp 8 - Học toán với OnlineMath

tương tự như câu này đều thay số thôi

20 tháng 10 2019

<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)

a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3

A= 12017 + 02018 + (-1)2019 = 0

Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)

Ta có :

gtx2xy(5x5y)x+8=0(xy)(x5)(x5)=3(5x)(xy1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3

Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT

24 tháng 3 2021
Chịu nha bạn

Ta có: a+b+c=2020

\(\Leftrightarrow\left\{{}\begin{matrix}a=2020-b-c\\b=2020-a-c\\c=2020-b-a\end{matrix}\right.\)

Ta có: \(P=\left(ab+c-2019\right)\left(bc+a-2019\right)\left(ca+b-2019\right)\)

\(=\left(ab+2020-a-b-2019\right)\left(bc+2020-b-c-2019\right)\left(ca+2020-a-c-2019\right)\)

\(=\left(ab-a-b+1\right)\left(bc-b-c+1\right)\left(ca-a-c+1\right)\)

\(=\left[a\left(b-1\right)-\left(b-1\right)\right]\left[b\left(c-1\right)-\left(c-1\right)\right]\left[a\left(c-1\right)-\left(c-1\right)\right]\)

\(=\left(b-1\right)\left(a-1\right)\left(c-1\right)\left(b-1\right)\left(c-1\right)\left(a-1\right)\)

\(=\left[\left(a-1\right)\left(b-1\right)\left(c-1\right)\right]^2\)

Vậy: P là số chính phương(đpcm)

30 tháng 6 2019

Nhầm là, tính A=(a-1)2019+(b2-1)2020+(c3-1)2021

Ta có : \(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)=9-2\times6=3\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)

Mà \(a+b+c=3\Rightarrow a=b=c=1\)

\(\Rightarrow A=\left(1-1\right)^{2019}+\left(1^2-1\right)^{2020}+\left(1^3-1\right)^{2021}\)

\(=0^{2019}+0^{2020}+0^{2021}=0\)

AH
Akai Haruma
Giáo viên
14 tháng 11 2021

Lời giải:
$a^2+b^2+c^2=ab+bc+ac$

$\Leftrightarrow 2a^2+2b^2+2c^2=2ab+2bc+2ac$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2\geq 0; (b-c)^2\geq 0; (c-a)^2\geq 0$ nên để tổng của chúng $=0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$

$\Rightarrow a=b=c$

Kết hợp $a+b+c=2019$

$\Rightarrow a=b=c=\frac{2019}{3}=673$

NV
5 tháng 10 2020

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)

\(\Rightarrow a=b=c=\frac{2019}{3}\)

8 tháng 11 2021

\(\dfrac{2019}{3}\)=673

Y
20 tháng 5 2019

\(\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)

\(\Rightarrow\left(a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\right)-abc=0\)

\(\Rightarrow a^2b+bc^2+2abc+a^2c+ac^2+b^2c+ab^2=0\)

\(\Rightarrow b\left(a+c\right)^2+ac\left(a+c\right)+b^2\left(a+c\right)=0\)

\(\Rightarrow\left(a+c\right)\left[b\left(a+c\right)+ac+b^2\right]=0\)

\(\Rightarrow\left(a+c\right)\left(a+b\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+c=0\Rightarrow a^{2019}+c^{2019}=0\\b+c=0\Rightarrow b^{2019}+c^{2019}=0\\a+b=0\Rightarrow a^{2019}+b^{2019}=0\end{matrix}\right.\)

\(\Rightarrow P=1\)

*Hằng đẳng thức cần áp dụng:

\(x^n+y^n=\left(x+y\right)\left(x^{n-1}-x^{n-2}y+...-xy^{n-2}+y^{n-1}\right)\)

nên \(x+y=0\Rightarrow x^n+y^n=0\)