K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

1/(a-1)>1/(a+1)

30 tháng 12 2016

Vì a>1

=> a-1<a+1

=> 1/(a-1)>1/(a+1)           

( các phân số có cùng tử số phân số nào có tử lớn thì nhỏ và ngược lại)

ví dụ 

a là 1 

b là 2

ta có 

 1/1 - 1/2 và 1/1x2

= 1/2 và 1/2 

khi đó ta thấy 1/2 = 1/2 

và  1/1 - 1/2 = 1/1x2

11 tháng 8 2021

giúp mik với ạ

Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé ! 

Ta có : 

A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2 

\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B 

Vậy , A = B 

~ Chúc bạn học giỏi ! ~

25 tháng 9 2021

help me!!!

17 tháng 5 2021

                                                                     \(Giải\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}\)\(+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2014}\)

      \(A=0+0+0+...+0+0\)

      \(\Rightarrow A=0\)   

\(a.\)\(A< 1\)

b.   \(A< \frac{3}{4}\)

18 tháng 10 2018

a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)

có :

\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)

nên :

\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(\Rightarrow A< 1-\frac{1}{2011}\)

\(\Rightarrow A< \frac{2010}{2011}< 1\)

b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\) 

\(\frac{3}{4}=1-\frac{1}{4}\)

\(\frac{1}{4}>\frac{1}{2011}\)

nên :

\(A>\frac{3}{4}\)

19 tháng 3 2020

a, A bé hơn 1

b, A bé hơn 3/4