K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2016

ta có 

9x2+12xy+4y2=32xy

=>(3x+2y)2=32xy =>3x+2y=\(\sqrt{32xy}\)

mặt khác

9x2-12xy+4y2=8xy

=>(3x-2y)2=8xy  =>3x-2y=\(\sqrt{8xy}\)

vậy \(\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}\)

=0,5

5 tháng 3 2016

đề này có trong violimpic vòng 15

hôm qua mình đi thi có gặp bài này ko bt sai hay đúng nữa

mà hình như mình làm sai dấu

1 tháng 12 2018

a) ĐKXĐ : \(x+y\ne0\)

\(x^2-2y^2=xy\)

\(x^2-y^2-y^2-xy=0\)

\(\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)

\(\left(x+y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(Loai\right)\\x-2y=0\left(Chon\right)\end{matrix}\right.\)

Với x - 2y = 0 ta có x = 2y

Thay x = 2y vào A ta có :

\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

1 tháng 12 2018

a)

Ta có:

\(x^2-2y^2=xy\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=\left(x+y\right)\left(x-2y\right)=0\)

=>x-2y=0=>x=2y

Thế vào A rùi giải

20 tháng 7 2017

ta có:

 \(\left(3x-2y\right)^2=9x^2-12xy+4y^2=20xy-12xy=8xy\)

\(\Rightarrow3x-2y=\sqrt{8xy}\)(1)

\(\left(3x+2y\right)^2=9x^2+12xy+4y^2=20xy+12xy=32xy\)

\(\Rightarrow3x+2y=\sqrt{32xy}\)(2)

từ (1) và (2) 

\(\Rightarrow\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}=0,5\)

3 tháng 3 2017

= \(\dfrac{1}{2}\)nha

3 tháng 3 2017

\(\dfrac{3x-2y}{3x+2y}=\dfrac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\dfrac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}=\dfrac{1}{4}\)

thay từ đề vào ok

3 tháng 10 2018

     \(9x^2 +4y^2=20xy\)

\(\Rightarrow9x^2-20xy+4y^2=0\)

\(\Rightarrow9x^2-18xy-2xy+4y^2=0\)

\(\Rightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)

\(\Rightarrow\left(x-2y\right)\left(9x-2y\right)=0\)

\(\Rightarrow9x=2y\) (vì \(x< 2y\Rightarrow x-2y\ne0\) )

\(\Rightarrow\frac{x}{2}=\frac{y}{9}\)

Đặt \(\frac{x}{2}=\frac{y}{9}=t\Rightarrow x=2t,y=9t\)

Ta có: \(A=\frac{3.2t-2.9t}{3.2t+2.9t}=-\frac{12t}{24t}=-\frac{1}{2}\)

Chúc bạn học tốt.

11 tháng 9 2019

\(B=1+5y-y^2=-\left(y^2-5y-1\right)\)

\(=-\left(y^2-2.\frac{5}{2}x+\frac{25}{4}-\frac{29}{4}\right)\)

\(=-\left[\left(y-\frac{5}{2}\right)^2-\frac{29}{4}\right]\)

\(=-\left(y-\frac{5}{2}\right)^2+\frac{29}{4}\le\frac{29}{4}\)

11 tháng 9 2019

\(C=4x-x^2+1=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left[\left(x-2\right)^2-5\right]\)

\(=-\left(x-2\right)^2+5\le5\)

16 tháng 2 2017

Theo bài ra , ta có :

\(9x^2+4y^2=20xy\)

\(\Leftrightarrow9x^2-18xy-2xy+4y^2=0\)

\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x-2y=0\\9x-2y=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=2y\\9x=2y\end{matrix}\right.\)

Thay x = 2y vào A ta đk :

\(A=\frac{3x-2y}{3x+2y}=\frac{3.2y-2y}{3.2y+2y}=\frac{4y}{8y}=\frac{4}{8}=\frac{1}{2}\)

Vậy \(A=\frac{1}{2}\)

Chúc bạn học tốt =))ok

16 tháng 2 2017

Ta có: A=\(\frac{3x-2y}{3x+2y}\)

=>A2=\(\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}\)=\(\frac{9x^2-12xy+4y^2}{9x^2+12xy+4y^2}\)=\(\frac{\left(9x^2+4y^2\right)-12xy}{\left(9x^2+4y^2\right)+12xy}\)=\(\frac{20xy-12xy}{20xy+12xy}\)=\(\frac{8xy}{32xy}\)=\(\frac{1}{4}\)

=>\(\left\{\begin{matrix}A=\frac{1}{2}\\A=\frac{-1}{2}\end{matrix}\right.\)

Do 2y<3x<0

=>\(\frac{3x-2y}{3x+2y}\)<0

=>A=\(\frac{-1}{2}\)