K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

 \(\left|y-z\right|< 1\)

mà   \(\left|y-z\right|\ge0\)

\(\Rightarrow\)\(\left|y-z\right|=0\)

\(\Leftrightarrow\)\(y-z=0\)

\(\Leftrightarrow\)\(y=z\)

Ta có:   \(\left|x-z\right|< 2017\)  

   \(\Leftrightarrow\)\(\left|x-y\right|< 2017\)(thay  \(z=y\))

   \(\Leftrightarrow\)\(\left|x-y\right|< 2017< 2018\)

   \(\Leftrightarrow\)\(\left|x-y\right|< 2018\)(đpcm)

1 tháng 2 2018

Cảm ơn bạn. Bạn giỏi và tốt quá.May có bạn, ko mình cứ nghĩ cả ngày hôm nay cứ như thằng điên ý. Cái cảm giác mà ko giải đc bài toán nó khó chụi lắm.

14 tháng 1 2018

Có : 2018 = 2017 + 1 > |x-z|+|y-z| = |x-z|+|z-y| >= |x-z+z-y| = |x-y|

=> ĐPCM

Tk mk nha

\(\left|x-z\right|+\left|y-z\right|< 2017+1=2018\)

Mà \(\left|x-z\right|+\left|y-z\right|=\left|x-z\right|+\left|z-y\right|\ge\left|x-z+z-y\right|=\left|x-y\right|\)

\(\Rightarrow\)\(\left|x-y\right|\le\left|x-z\right|+\left|y-z\right|< 2018\)\(\Leftrightarrow\)\(\left|x-y\right|< 2018\) ( đpcm ) 

... 

12 tháng 12 2018

cảm ơn bạn rất nhiều

9 tháng 8 2019

Giúp vs ạ !

9 tháng 8 2019

Giả sử \(x=\frac{a}{m},y=\frac{b}{m}(a,b,m\inℤ,m\ge0)\)

Vì x < y nên ta suy ra a < b

Ta có : \(x=\frac{a}{m},y=\frac{b}{m}\Leftrightarrow x=\frac{2a}{2m},y=\frac{2b}{2m}\)

Mà a < b nên a + a < a + b <=> 2a < a + b

Do 2a < a + b thì x < y                                               [1]

Lại có : a < b nên a + b < b + b <=> a + b < 2b           

Mà a + b < 2b <=> x < z                                           [2]

Từ 1 và 2 suy ra x < z < y \((đpcm)\)

23 tháng 7 2015

\(a>b>0\Rightarrow\frac{a}{b}=\frac{2a}{2b}=\frac{2a}{b+b}<\frac{2a}{a+b}\)

\(\frac{x}{y}=\frac{y}{z}\Rightarrow\frac{x}{z}=\frac{x}{y}.\frac{y}{z}=\frac{x^2}{y^2}=\frac{y^2}{z^2}=\frac{x^2+y^2}{y^2+z^2}\)