K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2021

* Với \(m=-2\) thì phương trình đã cho là phương trình bậc nhất một ẩn và chỉ có một nghệm duy nhất

* Với \(m\ne-2\) thì phương trình đã cho là phương trình bậc hai một ẩn.

\(\Delta'=m^2-\left(m+2\right)\times1=m^2-m-2\)

TH1: \(\Delta'< 0\Leftrightarrow m^2-m-2< 0\Leftrightarrow-1< m< 2\) thì phương vô nghiệm

TH2: \(\Delta'=0\Leftrightarrow m^2-m-2=0\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\) thì phương trình có nghiệm kép

 TH3: \(\Delta'>0\Leftrightarrow m^2-m-2>0\Leftrightarrow\left[{}\begin{matrix}-\infty\le m< -1\\2< m\le+\infty\end{matrix}\right.\) thì phương trình có hai nghiệm phân biệt

Vậy: Với \(m=-2\) thì phương trình đã cho có 1 nghiệm duy nhất

               \(-1< m< 2\) thì phương trình đã cho vô nghiệm

               \(m=-1\) hoặc \(m=2\) thì phương trình đã cho có nghiệm kép

               \(-\infty\le m< -1\) và \(m\ne-2\)hoặc \(2< m\le+\infty\) thì phương trình đã cho có hai nghiệm phân biệt

30 tháng 1 2022

loading...loading...loading...

 

 

 

10 tháng 7 2016

can tui giup k

NV
7 tháng 2 2020

1/ Với \(m=1\) pt có nghiệm duy nhất \(x=3\)

Với \(m\ne1\Rightarrow\Delta'=m^2-\left(m-1\right)\left(m-7\right)=8m-7\)

- Với \(m=\frac{7}{8}\) pt có nghiệm kép \(x=7\)

- Với \(m< \frac{7}{8}\) pt vô nghiệm

- Với \(\left\{{}\begin{matrix}m>\frac{7}{8}\\m\ne1\end{matrix}\right.\) pt có 2 nghiệm pt \(x_{1;2}=\frac{-m\pm\sqrt{8m-7}}{m-1}\)

NV
7 tháng 2 2020

2/ Ý a dễ, bạn tự làm

b/ Với \(m=0\Rightarrow x=-2\)

Với \(m\ne0\Rightarrow\Delta=\left(2m+1\right)^2-4m\left(m+2\right)=1-4m\)

- Với \(m=\frac{1}{4}\) pt có nghiệm kép \(x=1\)

- Với \(m>\frac{1}{4}\) pt vô nghiệm

- Với \(m< \frac{1}{4}\) pt có 2 nghiệm pb \(x_{1;2}=\frac{-2m-1\pm\sqrt{1-4m}}{2m}\)

16 tháng 12 2020

undefined

1: Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot\left(m+2\right)\left(3-m\right)\)

\(=\left(2m-2\right)^2+4\left(m+2\right)\left(m-3\right)\)

\(=4m^2-8m+4+4\left(m^2-3m+2m-6\right)\)

\(=4m^2-8m+4+4m^2-4m-24\)

\(=-12m-20\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-12m-20>0\)

\(\Leftrightarrow-12m>20\)

hay \(m< \dfrac{-5}{3}\)

Để phương trình có nghiệm kép thì Δ=0

\(\Leftrightarrow-12m-20=0\)

\(\Leftrightarrow-12m=20\)

hay \(m=\dfrac{-5}{3}\)

Để phương trình vô nghiệm thì Δ<0

\(\Leftrightarrow-12m-20< 0\)

\(\Leftrightarrow-12m< 20\)

hay \(m>\dfrac{-5}{3}\)

2: ĐKXĐ: \(m\ne-2\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+2}=\dfrac{2m-2}{m+2}\\x_1\cdot x_2=\dfrac{3-m}{m+2}\end{matrix}\right.\)

Ta có: \(x_1+x_2=x_1x_2\)

\(\Leftrightarrow\dfrac{2m-2}{m+2}=\dfrac{3-m}{m+2}\)

Suy ra: 2m-2=3-m

\(\Leftrightarrow2m+m=3+2\)

\(\Leftrightarrow3m=5\)

hay \(m=\dfrac{5}{3}\)(thỏa ĐK)

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Lời giải:

a)

\(\Delta=9-4m\)

Nếu \(m>\frac{9}{4}\Rightarrow \Delta=9-4m<0\Rightarrow \) pt vô nghiệm

Nếu \(m=\frac{9}{4}\Rightarrow \Delta=9-4m=0\Rightarrow \) pt có nghiệm kép \(x_1=x_2=\frac{3}{2}\)

Nếu \(m< \frac{9}{4}\Rightarrow \Delta=9-4m>0\Rightarrow \) pt có 2 nghiệm phân biệt

\(x_1=\frac{3+\sqrt{9-4m}}{2}; x_2=\frac{3-\sqrt{9-4m}}{2}\)

b)

Nếu \(m=\frac{1}{2}\) thì : \(-x+1=0\).

PT có nghiệm duy nhất $x=1$

Nếu \(m\neq \frac{1}{2}\Leftrightarrow 2m-1\neq 0\). PT đã cho là PT bậc 2 ẩn $x$.

\(\Delta'=m^2-(2m-1)=(m-1)^2\)

+) \(m=1\Rightarrow \Delta'=0\): PT có nghiệm kép \(x_1=x_2=1\)

+) \(m\neq 1\Rightarrow \Delta'>0\): PT có hai nghiệm phân biệt
\(x_1=\frac{m-(m-1)}{2m-1}=\frac{1}{2m-1}\); \(x_2=\frac{m+(m-1)}{2m-1}=1\)

Vậy.......