K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2019

Phương trình có dạng: \(\left(x-4\right)\left|x-2\right|=-m\)

Vẽ đồ thị hàm số \(y=\left(x-4\right)\left(x-2\right)=x^2-6x+8\) với phần \(x< 2\) lấy đối xứng qua trục hoành sẽ được đồ thị \(y=\left(x-4\right)\left|x-2\right|\)

Phác thảo như sau:

Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Nhìn vào đồ thị, ta biện luận được:

- Nếu \(-m< -1\Rightarrow m>1\) phương trình có 1 nghiệm duy nhất

- Nếu \(\left[{}\begin{matrix}-m=-1\\-m=0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) thì pt có 2 nghiệm

- Nếu \(-1< -m< 0\) hay \(0< m< 1\) thì pt có 3 nghiệm pb

9 tháng 8 2016

thanks

14 tháng 10 2018

a) Vẽ đồ thị hàm số y = x2 + 2x - 8

(công cụ vẽ (p) mình chưa thạo nên không vẽ được, chỉ có thể mô tả thôi)

Từ đồ thị của hàm số trên, suy ra đồ thị y = |x2 +2x - 8| gồm phần đồ thị y = x2 + 2x - 8 nằm trên Ox và phần dưới Ox lấy đối xứng qua Ox.

Số nghiệm của phương trình cần tìm là số giao điểm của 2 đồ thị y = |x2 +2x - 8| và y = m.

+ Nếu m < 0 thì PT vô nghiệm

+ Nếu m = 0 thì PT có 2 nghiệm

+ Nếu 0 < m < 9 thì PT có 4 nghiệm

+ Nếu m = 9 thì PT có 3 nghiệm

+ Nếu m > 9 thì PT có 2 nghiệm

b) Có - x2 + 3|x| - m + 1 = 0 ⇔ - x2 + 3|x| + 1 = m

Vẽ đồ thị hàm số y = - x2 + 3x + 1

Từ đồ thị trên, suy ra đồ thị của hàm số y = - x2 + 3|x| + 1 gồm phần đồ thị bên phải Oy và phần bên trái lấy đối xứng với bên phải qua Oy.

(TT a)

c) x2 + 4|x-2| + 1 - m = 0 ⇔ x2 + 4|x-2| + 1 = m

(TT b)

d) x|x-3| + x - 2 + m = 0 ⇔ x|x-3| + x - 2 = - m

Đồ thị y = x|x-3| + x - 2 = \(\left\{{}\begin{matrix}x\left(x-3\right)+x-2=x^2-2x-2\left(x\ge3\right)\\x\left(3-x\right)+x-2=-x^2+4x-2\left(x< 3\right)\end{matrix}\right.\)

Vẽ 2 đồ thị và biện luận như câu a

25 tháng 10 2020

1.

\(y=m-1=\left|-x^2+4x+5\right|\)

Phương trình đã cho có 4 nghiệm phân biệt khi đương thẳng \(y=m-1\) cắt đồ thị hàm số tại 4 điểm phân biệt

\(\Rightarrow0< m-1< 9\Rightarrow m\in\left(1;10\right)\)

10 tháng 10 2022

a: PT=>-x^2+2x-m=0

=>x^2-2x+m=0

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot m=-4m+4\)

Để phương trình có hai nghiệm thì -4m+4>=0

=>m<=1

b: \(PT\Leftrightarrow m=-x^2+2x\)

\(x\in\left[-1;2\right]\) nên \(\left\{{}\begin{matrix}-x^2\in\left[-4;0\right]\\2x\in\left[-2;4\right]\end{matrix}\right.\Leftrightarrow-x^2+2x\in\left[-6;4\right]\)

=>\(m\in\left[-6;4\right]\)