Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ đồ thị hàm số y = x2 + 2x - 8
(công cụ vẽ (p) mình chưa thạo nên không vẽ được, chỉ có thể mô tả thôi)
Từ đồ thị của hàm số trên, suy ra đồ thị y = |x2 +2x - 8| gồm phần đồ thị y = x2 + 2x - 8 nằm trên Ox và phần dưới Ox lấy đối xứng qua Ox.
Số nghiệm của phương trình cần tìm là số giao điểm của 2 đồ thị y = |x2 +2x - 8| và y = m.
+ Nếu m < 0 thì PT vô nghiệm
+ Nếu m = 0 thì PT có 2 nghiệm
+ Nếu 0 < m < 9 thì PT có 4 nghiệm
+ Nếu m = 9 thì PT có 3 nghiệm
+ Nếu m > 9 thì PT có 2 nghiệm
b) Có - x2 + 3|x| - m + 1 = 0 ⇔ - x2 + 3|x| + 1 = m
Vẽ đồ thị hàm số y = - x2 + 3x + 1
Từ đồ thị trên, suy ra đồ thị của hàm số y = - x2 + 3|x| + 1 gồm phần đồ thị bên phải Oy và phần bên trái lấy đối xứng với bên phải qua Oy.
(TT a)
c) x2 + 4|x-2| + 1 - m = 0 ⇔ x2 + 4|x-2| + 1 = m
(TT b)
d) x|x-3| + x - 2 + m = 0 ⇔ x|x-3| + x - 2 = - m
Đồ thị y = x|x-3| + x - 2 = \(\left\{{}\begin{matrix}x\left(x-3\right)+x-2=x^2-2x-2\left(x\ge3\right)\\x\left(3-x\right)+x-2=-x^2+4x-2\left(x< 3\right)\end{matrix}\right.\)
Vẽ 2 đồ thị và biện luận như câu a
biện luận theo m số nghiệm âm, số nghiệm dương của pt sau
\(mx^2+\left(m^2-3m+1\right)-2m^2+3m-1=0\)
a: PT=>-x^2+2x-m=0
=>x^2-2x+m=0
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot m=-4m+4\)
Để phương trình có hai nghiệm thì -4m+4>=0
=>m<=1
b: \(PT\Leftrightarrow m=-x^2+2x\)
\(x\in\left[-1;2\right]\) nên \(\left\{{}\begin{matrix}-x^2\in\left[-4;0\right]\\2x\in\left[-2;4\right]\end{matrix}\right.\Leftrightarrow-x^2+2x\in\left[-6;4\right]\)
=>\(m\in\left[-6;4\right]\)
Phương trình có dạng: \(\left(x-4\right)\left|x-2\right|=-m\)
Vẽ đồ thị hàm số \(y=\left(x-4\right)\left(x-2\right)=x^2-6x+8\) với phần \(x< 2\) lấy đối xứng qua trục hoành sẽ được đồ thị \(y=\left(x-4\right)\left|x-2\right|\)
Phác thảo như sau:
Nhìn vào đồ thị, ta biện luận được:
- Nếu \(-m< -1\Rightarrow m>1\) phương trình có 1 nghiệm duy nhất
- Nếu \(\left[{}\begin{matrix}-m=-1\\-m=0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) thì pt có 2 nghiệm
- Nếu \(-1< -m< 0\) hay \(0< m< 1\) thì pt có 3 nghiệm pb