Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2-2x=a\)
\(\Rightarrow a\left(a-1\right)-6=a^2-a-6=\left(a^2+2a\right)+\left(-3a-6\right)=\left(a+2\right)\left(a-3\right)\)
Câu trả lời là không. Và lời giải khá đơn giản. Thay dấu cộng bằng số 1 và dấu trừ bằng - 1. Xét tích tất cả các số trên bảng vuông. Khi đó, qua mỗi phép biến đổi, tích này không thay đổi (vì sẽ đổi dấu 4 số). Vì vậy, cho dù ta thực hiện bao nhiêu lần, từ bảng vuông (1, 15) sẽ chỉ đưa về các bảng vuông có số lẻ dấu -, có nghĩa là không thể đưa về bảng có toàn dấu cộng.
Bạn tham khảo nha
Đặt \(A=\sqrt{2+\sqrt{3}}\)
\(\Rightarrow A\sqrt{2}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
\(\Rightarrow A=\frac{\sqrt{3}+1}{2}hay\sqrt{2+\sqrt{3}}=\frac{\sqrt{3}+1}{2}\)
TK nha!