≥8xyz

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

Áp dụng bất đẳng thức AM-GM ta có :

\(\cdot\)\(\) x2+y2 ≥ 2xy

\(\Rightarrow\left(x+y\right)^2-2xy\ge2xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\cdot\) y2+z2 ≥2yz

\(\Rightarrow\left(y+z\right)^2-2yz\ge2yz\)

\(\Rightarrow\left(y+z\right)^2\ge4yz\)

\(\cdot\) x2+z2 ≥ 2xz

\(\Rightarrow\left(x+z\right)^2-2xz\ge2xz\)

\(\Rightarrow\left(x+z\right)^2\ge4xz\)

Hai vế của bất đẳng thức trên đều không âm, nhân từng vế

\(\Rightarrow\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2\ge64x^2y^{2^{ }}z^2\)

\(\Rightarrow\left[\left(x+y\right)\left(y+z\right)\left(x+z\right)\right]^2\ge\left(8xyz\right)^2\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)

Dấu bằng xảy ra khi \(x=y=z\)

17 tháng 11 2017

mình cảm ơn bạn

31 tháng 3 2018

Áp dụng BĐT Cô - si : a + b ≥ 2\(\sqrt{ab}\)

=> x + y ≥ \(2\sqrt{xy}\) ( 1 )

y + z ≥ \(2\sqrt{yz}\) ( 2 )

x + z ≥ 2\(\sqrt{xz}\) ( 3 )

Nhân tưng vế của ( 1 , 2 , 3) , ta được :

( x + y )( y + z)( z + x ) ≥ \(2\sqrt{xy}\) . \(2\sqrt{yz}\) .2 \(\sqrt{xz}\)

<=> ( x + y )( y + z)( z + x ) ≥ 8 xyz

31 tháng 3 2018

ta có (x+y)2 ≥ 4xy

(y+z)2≥ 4yz

(x+z)2≥4xz

nhân từng vế của bđt trên ta được

(x+y)2 (y+z)2 (x+z)2 ≥ 64 x2y2z2

=> [(x+y)(y+z)(x+z)]2≥ (8xyz)2

=>(x+y)(y+z)(x+z)≥ 8xyz(đpcm)

29 tháng 8 2017

2. Phân tích vế trái ta được:

\(2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)

Phân tích vế phải ta được:

\(6.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)

\(VT=VP\) nên \(VP-VT=0.\)

\(\Rightarrow4.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]=0\)

\(\Rightarrow2.\left\{2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\right\}=0\)

\(\Rightarrow2.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)

\(\Rightarrow x=y=z\) ( đpcm )

11 tháng 10 2018

bạn tham khảo ở đây: Câu hỏi của Nguyễn Phương Linh - Toán lớp 8 - Học toán với OnlineMath

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 1:
Vì $x+y+z=1$ nên:

\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)

\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)

\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Vậy $Q$ max bằng $1$

Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 2:
Vì $x+y+z=1$ nên:

\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)

\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)

Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)

\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)

Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)

Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)

Dấu bằng xảy ra khi $3x=3y=3z=1$

24 tháng 3 2017

\(P=\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)

\(P=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\) ( 1 )

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+zy}+\dfrac{z^2}{xz+yz}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow P\ge\dfrac{3}{2}\)

Vậy \(P_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(x=y=z\)

24 tháng 3 2017

bài này \(P\ge\dfrac{3}{2}\) là BĐT Nesbitt có vô vàn cách c/m BĐT này từ cách cấp 1-> cấp 3 bn cần thì IB

còn đây là cách c/m tổng quát có thể áp dụng cho mọi bài cả bài này Here