K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Ta có:

\(\dfrac{a}{b}=\dfrac{a\cdot\left(b+2006\right)}{b\cdot\left(b+2006\right)}=\dfrac{ab+2006a}{b^2+2006b}\\ \dfrac{a+2006}{b+2006}=\dfrac{\left(a+2006\right)\cdot b}{\left(b+2006\right)\cdot b}=\dfrac{ab+2006b}{b^2+2006b}\)

\(a< b\Rightarrow2006a< 2006b\Rightarrow ab+2006a< ab+2006b\)

\(\Rightarrow\dfrac{ab+2006a}{b^2+2006b}< \dfrac{ab+2006b}{b^2+2006b}\\ \Leftrightarrow\dfrac{a}{b}< \dfrac{a+2006}{b+2006}\)

10 tháng 5 2017

\(\frac{a}{b}< \frac{a+2006}{b+2006}\)

\(\Leftrightarrow a\left(b+2006\right)< b\left(a+2006\right)\)

\(\Leftrightarrow ab+2006a< ab+2006b\)

\(\Leftrightarrow2006a< 2006b\)

\(\Leftrightarrow a< b\) (thỏa mãn đề bài)

Vậy \(\frac{a}{b}< \frac{a+2006}{b+2006}\)

12 tháng 8 2017

1) Nếu a/b>1 thì a/b>b/b<=>a>b
2)Nếu a>b thì a.z>b.z=>a/b>z/z<=>a/b>1
3)Nếu a/b<1 thì a/b<b/b<=>a<b
4)Nếu a<b=>a.z<b.z=>a/b<z/z<=>a/b<1

9 tháng 6 2017

Ta có:

\(\dfrac{a}{b}=\dfrac{a.d}{b.d}\)\(\dfrac{c}{d}=\dfrac{c.b}{d.b}\)

Từ trên suy ra :

Nếu ad < bc thì \(\dfrac{a}{b}< \dfrac{c}{d}\) \(\left(ĐPCM\right)\)

23 tháng 8 2018

Giải bài 5 trang 8 Toán 7 Tập 1 | Giải bài tập Toán 7

Vì a < b => a + a < a + b => 2a < a + b

Do 2a < a + b nên x < z (1)

Vì a < b nên a + b < b + b => a + b < 2b

Do a + b < 2b nên z < y (2)

Từ (1) và (2) => x < z < y (đpcm)

23 tháng 8 2018

thanks bạn nha

12 tháng 7 2017

Bài 1:

\(\dfrac{a}{b}< \dfrac{c}{d}\) nên ad<bc (1)

Xét tích; a.(b+d)=ab+ad (2)

b.(a+c)=ba+bc (3)

Từ (1),(2),(3) suy ra a.(b+d)<b.(a+c) .

Do đó \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (4)

Tương tự ta lại có \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (5)

Kết hợp (4),(5) => \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

hay x<y<z

​Bài 2:

a) x là một số hữu tỉ \(\Leftrightarrow\)\(b-15\ne0\Leftrightarrow b\ne15\)

b)x là số hữu tỉ dương\(\Leftrightarrow b-15>0\Leftrightarrow b>15\)

c) x là số hữu tỉ âm \(\Leftrightarrow b-15< 0\Leftrightarrow b< 15\)

Bài 3:

Ta có: \(\left|x-\dfrac{1}{3}\right|\ge0\) (dấu bằng xảy ra \(\Leftrightarrow x=\dfrac{1}{3}\))

=>\(\left|x-\dfrac{1}{3}\right|+\dfrac{1}{4}\ge\dfrac{1}{4}>\dfrac{1}{5}\)

Vậy A\(>\dfrac{1}{5}\)

​Bài 4:

M>0 \(\Leftrightarrow x+5;x+9\) cùng dấu.Ta thấy x+5<x+9 nên chỉ có 2 trường hợp

M>0 \(\left[{}\begin{matrix}x+5;x+9\left(duong\right)\\x+5;x+9\left(am\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5\ge0\\x+9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\x\ge-9\end{matrix}\right.\)

​Bài 5:

Ta dùng phương pháp phản chứng:

Giả sử tồn tại 2 số hữu tỉ x và y thỏa mãn đẳng thức \(\dfrac{1}{x+y}=\dfrac{1}{x}+\dfrac{1}{y}\)

=>\(\dfrac{1}{x+y}=\dfrac{x+y}{x.y}\Leftrightarrow\left(x+y\right)^2=x.y\)

Đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\) còn x.y <0 ( do x,y là 2 số trái dấu,không đối nhau)

Vậy không tồn tại 2 số hữu tỉ x và y trái dấu ,không đối nhau thỏa mãn đề bài

8 tháng 6 2017

1

a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)

\(\Rightarrow ad< bc\)

2

b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)

Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\)\(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)

1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc

1b ) Như trên

2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)

\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa là.................

13 tháng 6 2018

Bài 1:

Ta có:

\(\dfrac{a}{b}>\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a.d}{b.d}>\dfrac{b.c}{b.d}\left(b;d>0\right)\)

\(\Leftrightarrow ad>bc\)

Vậy ...

Bài 2:

Ta có:

\(0< a< 5< b\)

\(\Leftrightarrow a;b>0\)

\(\Leftrightarrow\dfrac{b}{a}>0\)

\(a< 5< b\)

\(\Leftrightarrow a< b\)

\(\Leftrightarrow\dfrac{b}{a}>1\)

Vậy ...

a: \(A=\dfrac{1.3-2.6}{2.6}-\dfrac{5}{6}:2=\dfrac{-1}{2}-\dfrac{5}{12}=\dfrac{-11}{12}\)

\(B=\left(\dfrac{47}{8}-\dfrac{9}{4}-\dfrac{1}{2}\right):\dfrac{75}{26}\)

\(=\dfrac{47-18-4}{8}\cdot\dfrac{26}{75}=\dfrac{25}{75}\cdot\dfrac{26}{8}=\dfrac{1}{3}\cdot\dfrac{13}{4}=\dfrac{13}{12}\)

b: Để A<x<B thì \(\dfrac{-11}{12}< x< \dfrac{13}{12}\)

mà x là số nguyên

nên \(x\in\left\{0;1\right\}\)