Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)
Thử tiếp này \(\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\)
=> \(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right)\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-xz\right)\left(z^2-xy\right)}\)
Có \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)
=> \(\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\)
=> \(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-xz\right).\left(z^2-xy\right)}\)
\(=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{ac}{\left(x^2-yz\right).\left(z^2-xy\right)}=\frac{b^2-ac}{\left(y^2-xz\right)^2-\left(x^2-yz\right).\left(z^2-xy\right)}\)
\(=\frac{c^2}{\left(z^2-xy\right)^2}=\frac{ab}{\left(x^2-yz\right).\left(y^2-xz\right)}=\frac{c^2-ab}{\left(z^2-xy\right)^2-\left(x^2-yz\right).\left(y^2-xz\right)}\)
Xét (x2 - yz)2 - (y2 - xz)(z2 - xy)
= ...................... (Tui xét phía dưới rùi kéo xuống phía dưới mà coi)
= x(x3 + y3 + z3 - 3xyz)
Tương tự, ta có (y2-xz)2 - (x2 - yz).(z2 - xy) = y.(x3 + y3 + z3 - 3xyz)
(z2 - xy)2 - (x2 - yz).(y2 - xz) = z.(x3 + y3 + z3 - 3xyz)
=> \(\frac{a^2-bc}{x\left(x^2+y^3+z^3-3xyz\right)}=\frac{b^2-ac}{y\left(x^3+y^3+z^3-3xyz\right)}=\frac{c^2-ab}{z\left(x^3+y^3+z^3-3xyz\right)}\)
=> \(\frac{a^2-bc}{x}=\frac{b^2-ac}{y}=\frac{c^2-ab}{z}\)(Đpcm)
a)
- Với x = 0 => y = 0 => z=0
=> x = y = z = 0
2.Với x , y , z khác 0
Từ \(x^2=yz\)\(\Rightarrow\)\(x^3=xyz\)
\(y^2=xz\Rightarrow y^3=xyz\)
\(z^2=xy\Rightarrow z^3=xyz\)
Do đó : \(x^3=y^3=z^3\Rightarrow x=y=z\)
b)
\(x-x^2-1=-\left(x+\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)
\(1.\)
Ta có :
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(y+z=-x\)
\(x+z=-y\)
\(\Rightarrow M=\left(-z\right)\left(-x\right)\left(-y\right)=-xyz\)
Mà \(xyz=2\)
\(\Rightarrow M=-2\)
Vậy : \(M=-2\)
\(2.\)
\(a.\)
Ta có :
\(yt.yz=48.24\)
\(\Rightarrow y^2.zt=48.24\)
Mà \(yt=32\Rightarrow y^2.32=48.24\)
\(\Rightarrow y^2=\frac{48.24}{32}\)
\(\Rightarrow y^2=36\)
\(\Rightarrow y=\pm6\)
+ Nếu \(x=6\)
Ta có : \(t=48:6=8\)
\(z=24:6=4\)
\(x=12:6=2\)
+ Nếu \(y=-6\)
Ta có : \(t=48:\left(-6\right)=-8\)
\(z=24:\left(-6\right)=-4\)
\(x=12:\left(-6\right)=-2\)
Vậy \(x=-2;y=-6;z=-4;t=-8\) hoặc \(x=2;y=6;z=4;t=8\)
\(b.\)
Ta có :
\(y+t=11\) \(\left(1\right)\)
\(y+z=9\) \(\left(2\right)\)
\(x+y=6\) \(\left(3\right)\)
\(z+t=12\) \(\left(4\right)\)
Lấy \(\left(1\right)+\left(2\right)\), ta được :
\(2y+t+z=20\)
Mà \(t+z=12\)
\(\Rightarrow2y+12=20\)
\(\Rightarrow2y=8\)
\(\Rightarrow y=4\)
Từ \(\left(2\right)\) \(\Rightarrow z=9-y=9-4=5\)
Từ \(\left(3\right)\) \(\Rightarrow x=6-y=6-4=2\)
Từ \(\left(4\right)\) \(\Rightarrow t=12-z=12-5=7\)
Vậy : \(x=2;y=4;z=5;t=7\)
câu 0,5 điểm trong đề thi toán đấy. mk làm rùi nhưng ko chắc chắn lắm. các bạn làm giúp để mk so sánh bài làm nha! cảm ơn nhiều!
Từ x+y+z=0=>(x+y+z)2=0
<=>x2+y2+z2+2(xy+yz+zx)=0
<=>2(xy+yz+zx)= - (x2+y2+z2)\(\le\)0 với mọi x, y, z \(\in R\)
=>xy+yz+zx\(\le\)0.
Dấu bằng xảy ra khi và chỉ khi x=y=z=0.