\(2^x=64\)

2) \...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2023

1: \(2^x=64\)

=>\(x=log_264=6\)

2: \(2^x\cdot3^x\cdot5^x=7\)

=>\(\left(2\cdot3\cdot5\right)^x=7\)

=>\(30^x=7\)

=>\(x=log_{30}7\)

3: \(4^x+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)

=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)

=>\(2^x-1=0\)

=>\(2^x=1\)

=>x=0

4: \(9^x-4\cdot3^x+3=0\)

=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)

Đặt \(a=3^x\left(a>0\right)\)

Phương trình sẽ trở thành:

\(a^2-4a+3=0\)

=>(a-1)(a-3)=0

=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)

=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)

=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)

=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)

=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)

=>\(3^{x+1}-2=0\)

=>\(3^{x+1}=2\)

=>\(x+1=log_32\)

=>\(x=-1+log_32\)

6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\) 

=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)

Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)

Phương trình sẽ trở thành:

\(\dfrac{1}{b}+b=2\)

=>\(b^2+1=2b\)

=>\(b^2-2b+1=0\)

=>(b-1)2=0

=>b-1=0

=>b=1

=>\(\left(2+\sqrt{3}\right)^x=1\)

=>x=0

7: ĐKXĐ: \(x^2+3x>0\)

=>x(x+3)>0

=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)

=>\(x^2+3x=4^1=4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Lời giải:

ĐKXĐ: \(x>0\)

Sử dụng công thức sau: \(\log_ax=\frac{\ln x}{\ln a}\) vào bài toán ta có:

\(\log_2x+\log_3x=\log_2x\log_3x\)

\(\Leftrightarrow \frac{\ln x}{\ln 2}+\frac{\ln x}{\ln 3}=\frac{\ln x}{\ln 2}.\frac{\ln x}{\ln 3}\)

\(\Leftrightarrow \ln x\left(\frac{1}{\ln 2}+\frac{1}{\ln 3}-\frac{\ln x}{\ln 2.\ln 3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\ln x=0\left(1\right)\\\dfrac{1}{\ln2}+\dfrac{1}{\ln3}=\dfrac{\ln x}{\ln2.\ln3}\end{matrix}\right.\left(2\right)\)

\((1)\Leftrightarrow x=1\) (thỏa mãn)

\((2)\Leftrightarrow \frac{\ln 2+\ln 3}{\ln 2.\ln 3}=\frac{\ln x}{\ln 2.\ln 3}\)

\(\Leftrightarrow \ln x=\ln 2+\ln 3=\ln 6\Rightarrow x=6\)

Vậy \(x\in\left\{1;6\right\}\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2017

a)

Đặt \(\frac{x}{2}=t\Rightarrow 3^{2t}-4=5^t\)

\(\Leftrightarrow 9^t-5^t=4\)

TH1: \(t>1\Rightarrow 9^t-5^t< 4^t\)

\(\Leftrightarrow 9^t< 4^t+5^t\)

\(\Leftrightarrow 1< \left(\frac{4}{9}\right)^t+\left(\frac{5}{9}\right)^t\) \((*)\)

Ta thấy vì \(\frac{4}{9};\frac{5}{9}<1 \), do đó với \(t>1\Rightarrow \left\{\begin{matrix} \left(\frac{4}{9}\right)^t< \frac{4}{9}\\ \left(\frac{5}{9}\right)^t< \frac{5}{9}\end{matrix}\right.\)

\(\Rightarrow \left(\frac{4}{9}\right)^t+\left(\frac{5}{9}\right)^t< \frac{4}{9}+\frac{5}{9}=1\) (mâu thuẫn với (*))

TH2: \(t<1 \) tương tự TH1 ta cũng suy ra mâu thuẫn

do đó \(t=1\Rightarrow x=2\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2017

b)

Ta có: \(5^{2x}=3^{2x}+2.5^x+2.3^x\)

\(\Leftrightarrow (5^{2x}-2.5^{x}+1)=3^{2x}+2.3^x+1\)

\(\Leftrightarrow (5^x-1)^2=(3^x+1)^2\)

\(\Leftrightarrow (5^x-3^x-2)(5^x+3^x)=0\)

Dễ thấy \(5^x+3^x>0\forall x\in\mathbb{R}\Rightarrow 5^x-3^x-2=0\)

\(\Leftrightarrow 5^x-3^x=2\)

\(\Leftrightarrow 5^x=3^x+2\)

Đến đây ta đưa về dạng giống hệt phần a, ta thu được nghiệm \(x=1\)

c)

\((2-\sqrt{3})^x+(2+\sqrt{3})^x=4^x\)

\(\Leftrightarrow \left(\frac{2-\sqrt{3}}{4}\right)^x+\left(\frac{2+\sqrt{3}}{4}\right)^x=1\)

TH1: \(x>1\)

\(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}<1;x> 1 \Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x< \frac{2-\sqrt{3}}{4};\left ( \frac{2+\sqrt{3}}{4} \right )^x< \frac{2+\sqrt{3}}{4}\)

\(\Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x+\left ( \frac{2+\sqrt{3}}{4} \right )^x<\frac{2-\sqrt{3}}{4}+\frac{2+\sqrt{3}}{4}=1\) (vô lý)

TH2: \(x<1 \)

\(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}<1; x< 1 \Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x> \frac{2-\sqrt{3}}{4};\left ( \frac{2+\sqrt{3}}{4} \right )^x> \frac{2+\sqrt{3}}{4}\)

\(\Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x+\left ( \frac{2+\sqrt{3}}{4} \right )^x>\frac{2-\sqrt{3}}{4}+\frac{2+\sqrt{3}}{4}=1\) (vô lý)

Do đó \(x=1\)

NV
3 tháng 12 2018

1/Lấy logarit cơ số tự nhiên 2 vế:

\(ln\left(4^{3^x}\right)< ln\left(3^{4^x}\right)\Leftrightarrow3^x.ln4< 4^x.ln3\Leftrightarrow\left(\dfrac{3}{4}\right)^x< \dfrac{ln3}{ln4}=log_43\)

\(\Rightarrow x>log_{\dfrac{3}{4}}\left(log_43\right)\)

2/ Đề là thế này hả bạn? Đột nhiên con \(x^3\) chui vào trong ngoặc đứng 1 mình làm ko hiểu gì hết \(\sqrt{log_x\left(x^3+1\right).log_{x+1}\left(x+2\right)}\)

Đầu tiên là điều kiện để logarit xác định: \(x>0\)

Ta tìm điều kiện để căn thức xác định: \(log_x\left(x^3+1\right).log_{x+1}\left(x+2\right)\ge0\)

Do \(x>0\Rightarrow\left\{{}\begin{matrix}x+1>1\\x+2>2\end{matrix}\right.\) \(\Rightarrow log_{x+1}\left(x+2\right)>0\)

\(\Rightarrow log_x\left(x^3+1\right)\ge0\Rightarrow\dfrac{ln\left(x^3+1\right)}{lnx}\ge0\)

Lại có \(x>0\Rightarrow x^3+1>1\Rightarrow ln\left(x^3+1\right)>0\)

\(\Rightarrow lnx>0\Rightarrow x>1\)

Vậy TXĐ của pt là \(x>1\)

3 tháng 12 2018

cho mình xin lỗi, bài thứ 2 là tìm tập xác định của phương trình. Mọi người giúp 2 bài này, mình sắp thi r!

29 tháng 5 2017

3 tháng 8 2020

Bạn kiểm tra lại đề. Và vào hoc 24 để đăng nhé! 

Làm câu cuối:

TXĐ: \(x\in\)[ 0 ; + vô cùng ) 

\(y'=\frac{1}{2\sqrt{x}}-1=0\Leftrightarrow2\sqrt{x}=1\Leftrightarrow x=\frac{1}{4}\left(tm\right)\)

Vẽ bảng biến thiên: 

....

Từ bảng biên thiên: 

Hàm số đồng biến trong khoảng ( 0 ; 1/4 ) 

Hàm số nghịch biên trong khoảng ( 1/4 ; + dương vô cùng)

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:

\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)

Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:

\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)

Giả sử \(a=\log_yx=3\)\(b=\log_xy=\frac{1}{3}\)

\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D

31 tháng 3 2017

a) Tập xác định : D = R

limx→−∞f(x)=+∞limx→+∞f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3limx→−∞⁡f(x)=+∞limx→+∞⁡f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3

Bảng biến thiên:

Đồ thị hàm số:

b) y=f(x) = f(x) = -x3+3x2+9x+2.

f’(x) = -3x2+6x+9. Do đó:

f’(x-1)=-3(x-1)2+6(x-1)+9

= -3x2 + 12x = -3x(x-4) > 0 ⇔ 0 < x < 4

c) f’’(x) = -6x+6

f’’(x0) = -6 ⇔ -6x0 + 6 = -6 ⇔ x0 = 2

Do đó: f’(2) = 9, f(2) = 24. Phương trình tiếp tuyến của (C) tại x0 = 2 là:

y=f’(2)(x-2) + f(2) hay y = 9x+6

31 tháng 3 2017

Số nghiệm của các phương trình đã cho chính là số giao điểm của đồ thị hàm số y = f(x) ở vế trái của phương trình cới trục hoành ở câu a), b) và với đường thẳng y = -1 ở câu c).

a) Xét hàm số y = x3 – 3x2 + 5 . Tập xác định : R.

y' = 3x2 - 6x = 3x(x - 2); y' = 0 ⇔ x = 0,x = 2.

Bảng biến thiên:

Đồ thị như hình bên.

Từ đồ thị ta thấy phương trình đã cho có nghiệm duy nhất .

b) Xét hàm số y = -2x3 + 3x2 - 2 . Tập xác định : R.

y' = -6x2 + 6x = -6x(x - 1); y' = 0 ⇔ x = 0,x = 1.

Đồ thị như hình bên. Từ đồ thị ta thấy phương trình đã cho có nghiệm duy nhất .

c) Xét hàm số y = f(x) = 2x2 - 2x4. Tập xác định : R.

y' = 4x - 4x3 = 4x(1 - x2); y' = 0 ⇔ x = 0,x = ±1.

Bảng biến thiên:

Đồ thị hàm số f(x) và đường thẳng y = -1 như hình bên.

Từ đồ thị ta thấy phương trình đã cho có hai nghiệm phân biệt.

AH
Akai Haruma
Giáo viên
30 tháng 12 2017

*Đặt tên các biểu thức theo thứ tự lần lượt là A,B,C,D,E,F *

Câu 1)

Ta có: \(d(\cos x)=(\cos x)'d(x)=-\sin xdx\)

\(\Rightarrow -d(\cos x)=\sin xdx\)

\(\Rightarrow A=\int \sqrt{3\cos x+2}\sin xdx=-\int \sqrt{3\cos x+2}d(\cos x)\)

Đặt \(\sqrt{3\cos x+2}=t\Rightarrow \cos x=\frac{t^2-2}{3}\)

\(\Rightarrow A=-\int td\left(\frac{t^2-2}{3}\right)=-\int t.\frac{2}{3}tdt=-\frac{2}{3}\int t^2dt=-\frac{2}{3}.\frac{t^3}{3}+c\)

\(=-\frac{2}{9}t^3+c=\frac{-2}{9}\sqrt{(3\cos x+2)^3}+c\)

 

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2017

Câu 2:

\(B=\int (1+\sin^3x)\cos xdx=\int \cos xdx+\int \sin ^3xcos xdx\)

\(=\int \cos xdx+\int \sin ^3xd(\sin x)\)

\(=\sin x+\frac{\sin ^4x}{4}+c\)

Câu 3:

\(C=\int \frac{e^x}{\sqrt{e^x-5}}dx=\int \frac{d(e^x)}{\sqrt{e^x-5}}\)

Đặt \(\sqrt{e^x-5}=t\Rightarrow e^x=t^2+5\)

Khi đó: \(C=\int \frac{d(t^2+5)}{t}=\int \frac{2tdt}{t}=\int 2dt=2t+c=2\sqrt{e^x-5}+c\)

NV
5 tháng 10 2020

\(\Leftrightarrow3x+8-i=5+4i\)

\(\Leftrightarrow3x=-3+5i\)

\(\Leftrightarrow x=-1+\frac{5}{3}i\)