K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

a, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=2m-7\end{cases}}\)

mà : \(x_1+x_2=2m-2\Leftrightarrow\left(x_1+x_2\right)^2=4m^2-8m+4\)

\(\Leftrightarrow x_1+x_2=4m^2-8m+4-2x_1x_2=4m^2-8m+4-4m+14\)

\(=4m^2-12m+18\)hay 

\(A=4m^2-12m+18+2m-7=4m^2-10m+11=\left(2m-\frac{10}{4}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)

Dấu ''='' xảy ra khi m = 5/4 

15 tháng 3 2017

a = 1 , b = - ( 2m + 1 ) , c = m - 3

\(\Delta=b^2-4ac\)

     \(=\left[-\left(2m+1\right)\right]^2-4.1.\left(m-3\right)\)

      \(=4m^2+4m+1-4m+12\)

        \(=4m^2+13>0\forall m\)

Vậy: Pt (1) luôn có 2 nghiệm phân biệt với mọi m

Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=m-3\)

   \(A=3x_1x_2-2x_1x_2\ge4\)

 \(A=3P-2P\ge4\)

 \(A=P=m-3\ge4\Leftrightarrow m\ge7\)

31 tháng 5 2021

Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)

\(A=m^2+3+2m+2=m^2+2m+5=\left(m+1\right)^2+4\ge4\)

Dấu ''='' xảy ra khi m = -1 

Vậy GTNN A là 4 khi m =-1 

5 tháng 7 2019

Xét phương trình trên có:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)=m^2-4m+4-m^2+2m-4=-2m\)

Để phương trình trên có hai nghiệm phân biệt \(x_1;x_2\)điều kiện là:

\(\Delta'>0\Leftrightarrow-2m>0\Leftrightarrow m< 0\)

Với m<0. Áp dụng định lí Vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-2\right)\\x_1.x_2=m^2-2m+4\end{cases}}\)

=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(m-2\right)^2-2\left(m^2-2m+4\right)=2m^2-12m+8\)

Ta có:

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

<=> \(\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)(điều kiện: \(2m^2-12m+8\ne0\))

<=> \(\frac{1}{m^2+4-6m}-\frac{1}{m^2+4-2m}=\frac{1}{15m}\)

<=> \(\frac{4m}{\left(m^2+4-6m\right)\left(m^2+4-2m\right)}=\frac{1}{15m}\)

<=> \(60m^2=\left(m^2+4\right)^2-8m\left(m^2+4\right)+12m^2\)

<=> \(\left(m^2+4\right)^2-8m\left(m^2+4\right)-48m^2=0\)

<=> \(\left(\frac{m^2+4}{m}\right)^2-8\frac{m^2+4}{m}-48=0\)

Đặt t=\(\frac{m^2+4}{m}< 0\)

Ta có phương trình ẩn t:

\(t^2-8t-48=0\Leftrightarrow\orbr{\begin{cases}t=-4\\t=12\left(loai\right)\end{cases}}\)

Với t=-4 ta có:

\(\frac{m^2+4}{m}=-4\Leftrightarrow m^2+4m+4=0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)( tmđk)

vậy m=-2

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

2 tháng 5 2017

b/ Theo vi - et thì:

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)

Ta có:

\(A=\frac{1}{x^2_1x_2+\left(m-1\right)x_2+1}-\frac{4}{x_1x^2_2+\left(m-1\right)x_1+1}\)

\(=\frac{1}{\left(m-1\right)x_1+\left(m-1\right)x_2+1}-\frac{4}{\left(m-1\right)x_2+\left(m-1\right)x_1+1}\)

\(=\frac{1}{m\left(m-1\right)+1}-\frac{4}{m\left(m-1\right)+1}\)

\(=-\frac{3}{m^2-m+1}=-\frac{3}{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\)

\(\ge-\frac{3}{\frac{3}{4}}=-4\)

Vậy GTNN là A = - 4 đạt được khi \(m=\frac{1}{2}\) 

2 tháng 5 2017

Em không hiểu dòng 2 của biểu thức ý..

7 tháng 5 2019

Để pt có ng0 thì: \(\Delta'=\left(2m+5\right)^2-2m-1>0\)

\(\Leftrightarrow4m^2+2m+24>0\left(LĐ\right)\)

Theo Viet:\(x_1+x_2=4m+10;x_1x_2=2m+1\)

\(A^2=\left|x_1\right|+\left|x_2\right|-2\sqrt{x_1x_2}\)

\(A^2=\left|x_1\right|+\left|x_2\right|-2\sqrt{2m+1}\)

\(A^2=\sqrt{\left(x_1+x_2\right)^2}-2\sqrt{2m+1}\)

\(A^2=\sqrt{\left(4m+10\right)^2}-2\sqrt{2m+1}\)

Đến đây thì dễ rồi.

7 tháng 5 2019

\(\left|\sqrt{x_1}\right|-\left|\sqrt{x_2}\right|\) ?